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ABSTRACT: Soil microtopography is a property of critical importance in many earth surface processes but is often difficult to
quantify. Advances in computer vision technologies have made image-based three-dimensional (3D) reconstruction or Structure-
from-Motion (SfM) available to many scientists as a low cost alternative to laser-based systems such as terrestrial laser scanning
(TLS). While the performance of SfM at acquiring soil surface microtopography has been extensively compared to that of TLS on bare
surfaces, little is known about the impact of vegetation on reconstruction performance. This article evaluates the performance of SfM
and TLS technologies at reconstructing soil microtopography on 6m × 2m erosion plots with vegetation cover ranging from 0% to
77%. Results show that soil surface occlusion by vegetation was more pronounced with TLS compared to SfM, a consequence of the
single viewpoint laser scanning strategy adopted in this study. On the bare soil surface, elevation values estimated with SfM were
within 5mm of those from TLS although long distance deformations were observed with the former technology. As vegetation cover
increased, agreement between SfM and TLS slightly degraded but was significantly affected beyond 53% of ground cover. Detailed
semivariogram analysis on meter-square-scale surface patches showed that TLS and SfM surfaces were very similar even on highly
vegetated plots but with fine scale details and the dynamic elevation range smoothed out with SfM. Errors in the TLS data were
mainly caused by the distance measurement function of the instrument especially at the fringe of occlusion regions where the laser
beam intersected foreground and background features simultaneously. From this study, we conclude that a realistic approach to
digitizing soil surface microtopography in field conditions can be implemented by combining strengths of the image-based method
(simplicity and effectiveness at reconstructing soil surface under sparse vegetation) with the high accuracy of TLS-like technologies.
Copyright © 2015 John Wiley & Sons, Ltd.
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Introduction

Understanding sediment redistribution along transient landscape
positions is essential to addressing most erosion, sedimentation
and contaminant loading problems. At the hillslope scale, vari-
ous techniques have been developed to quantify erosion and de-
position processes. Toy et al. (2002) distinguish four fundamental
ways to measure erosion including: (1) change in weight often
limited to laboratory or field experiments on small soil samples;
(2) change in surface elevation; (3) change in channel cross-
section dimensions; (4) sediment collection from erosion plots
and watersheds. While sediment collection techniques are sim-
ple and reliable, they are inadequate to quantify deposition pro-
cesses and lead to loss of spatial resolution because transport
processes are spatially lumped into runoff samples. Techniques
based on soil surface elevation (or microtopography) changes
may not directly relate to masses of soil moved in some cases
due to the grain size selectivity of erosion and deposition pro-
cesses and to the microscopic contribution of the soil colloidal
fraction to soil surface elevation (Heng et al., 2010; Nouwakpo
andHuang, 2012b). Nevertheless, changes in soilmicrotopography
provide valuable information on spatial redistribution of sediments
following erosive events (e.g. Rieke-Zapp andNearing, 2005; Berger
et al., 2010; Heng et al., 2011; Nouwakpo and Huang, 2012b). In
addition, soilmicrotopography is useful in describing other physical,
hydrologic and biological processes. It was shown for example to
control infiltration and runoff amounts (Romkens et al., 2001;
Thompson et al., 2010) and plays a central role in ecohydrologic
processes such as rainwater redistribution, seed displacement and
plant competition (Rossi and Ares, 2012b).
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Existing soil microtopography survey methods

Early soil microtopography acquisition devices estimate surface
elevation from mechanical relief meters consisting of regularly
spaced needles that are mobile in the vertical direction along a
one-dimensional horizontal frame. Mechanical relief meters
have been used in many soil erosion studies to characterize soil
surface microtopography (e.g. Guzha, 2004; Moreno et al.,
2008) or track changes resulting from erosion (Kincaid and
Williams, 1966; Elliot et al., 1997). Because the contact
required between these mechanical devices and the soil
surface is associated with measurement biases and surface
disturbances, non-contact elevation measurement devices are
preferred (Jester and Klik, 2005). Laser scanners and image-
based three-dimensional (3D) reconstruction have been the
most commonly used technologies for non-contact soil
microtography measurement.
Laser-based technologies use a triangulation system

consisting of a laser light source and either an image acquisi-
tion device measuring the angle of the laser light reflected from
the soil surface (Helming et al., 1998; Romkens et al., 2001;
Darboux and Huang, 2003) or a time of travel measurement
system measuring the distance between to the soil surface at
a known instrument orientation. The latter laser-based technol-
ogy also known as light detection and ranging (LiDAR) has
been used for high resolution soil microtopography measure-
ment in the fields of hydrology and ecohydrology (e.g. Roering
et al., 2009; Eitel et al., 2011; Castillo et al., 2012; Sankey et al.,
2012). Laser technologies are often assumed to be highly accu-
rate and generate scaled elevation models but their tradition-
ally high hardware acquisition cost and bulk limits their
widespread use.
Image-based 3D reconstruction technologies can be catego-

rized in two broad groups: traditional stereo-photogrammetry
and Structure-from-Motion (SfM) photogrammetry. The funda-
mental difference between SfM and traditional photogramme-
try lies in the steps required for 3D scene reconstruction.
Traditional photogrammetry requires a priori knowledge of
the camera position and orientation before reconstructing a
3D scene. This camera pose information is typically solved
from ground control points (GCPs) that often need to be manu-
ally identified in the images by the user. In the very specific
cases of imaging systems equipped with global positioning
and inertial measurement units, camera pose can also be
initialized from position and orientation metadata. Traditional
stereo-photogrammetry was used in early attempts to apply
image-based 3D reconstruction to acquire soil surface
microtopography (e.g. Lo and Wong, 1973; Collins and Moon,
1979; Valentine and Cook, 1979). Over the years, traditional
photogrammetry which was historically considered an imprac-
tical technology due to its reliance on expensive hardware,
software and trained personnel has benefited from various
technological advances (e.g. advent of digital cameras,
progress in lens manufacturing and semi-automation of key
photogrammetric steps) leading to its increased use for soil
microtopography acquisition in both close-range (e.g. Barker
et al., 1997; Aguilar et al., 2009; Berger et al., 2010; Heng
et al., 2010; Nouwakpo and Huang, 2012a) and low-altitude
aerial applications (e.g. Ries and Marzolff, 2003; Marzolff and
Poesen, 2009).
During the past two decades, advances in computer vision

led to the development of SfM technology which significantly
simplified image-based surface reconstruction. In contrast to
stereo-photogrammetry, SfM solves 3D scene structure and
camera pose simultaneously by making use of advanced image
feature detection and matching techniques (e.g. Harris and
Stephens, 1988; Lowe, 1999; Bay et al., 2006) and a highly
Copyright © 2015 John Wiley & Sons, Ltd.
redundant bundle adjustment procedure, allowing for a simpli-
fied workflow for 3D reconstruction. With this new approach, a
3D point cloud in an arbitrary model coordinate system is
created and can be appropriately scaled and oriented by apply-
ing a simple 3D similarity transformation to targets of which
only ground and model space 3D coordinates need to be
known (Westoby et al., 2012). Although the SfM approach
often leads to lower accuracy compared to the more rigorous
traditional photogrammetry (James and Robson, 2012), it offers
the advantage of simpler implementation. In addition, the inter-
est of geoscientists in this technology as a surface reconstruc-
tion tool has been heightened by the development of freely
available SfM software (e.g. Castillo et al., 2012; James and
Robson, 2012; Westoby et al., 2012) and the emergence of
low cost unmanned aerial vehicles used as convenient plat-
forms for large-scale projects (e.g. Rosnell and Honkavaara,
2012; Mancini et al., 2013; Javemick et al., 2014; Ouedraogo
et al., 2014).
Aims of this study

The performance of SfM as earth surface reconstruction
technology has been evaluated against various alternative tech-
nologies such as traditional photogrammetry (e.g. James and
Robson, 2014b; Nouwakpo et al., 2014), total station and laser
profilemeter (Castillo et al., 2012), aerial (e.g. Johnson et al.,
2014) and terrestrial (e.g. Castillo et al., 2012; Mancini et al.,
2013; Gomez-Gutierrez et al., 2014; James and Quinton,
2014; Johnson et al., 2014; Kaiser et al., 2014) LiDAR as well
as real-time kinematic systems (Mancini et al., 2013). In the
aforementioned studies comparing SfM to terrestrial LiDAR
(or terrestrial laser scanning [TLS]) systems the latter technology
has often been used as benchmark because of the well-
documented performance of this tool in geosciences (Castillo
et al., 2012).

TLS and SfM technologies often show appreciable discrep-
ancies in the presence of vegetation on the surveyed areas
(e.g. Castillo et al., 2012; Mancini et al., 2013). Vegetated
patches often cause abrupt near-vertical changes in surface
elevation, occlude soil surface and are susceptible to detri-
mental wind-driven motion, thus challenging both SfM and
TLS technologies. Many geoscience processes associated with
soil surface microtopography occur on naturally vegetated
surfaces. Nevertheless, few guidelines exist for the acquisition
and treatment of SfM data on vegetated surfaces. Also,
the range and characteristics of vegetative cover under which
useful soil microtopography information can be recovered
is unclear. The aim of this article is to evaluate the perfor-
mance of SfM in comparison to TLS at reconstructing soil
microtopography on a range of natural vegetation covers and
characteristics in order to provide application recommenda-
tions for vegetated surfaces.
Material and Methods

Hardware used

A Canon EOS Digital Rebel XT camera with a nominal fixed
focal length of 20mm was used to acquire images used in
SfM reconstructions. The camera lens was set to manual focus
after adjusting it to the average camera – soil surface distance
of 2m for this project. The lens was then taped to avoid
accidental changes to focus setting and internal camera
calibration.
Earth Surf. Process. Landforms, (2015)



SFM AND LIDAR PERFORMANCE ON VEGETATED PLOTS
In this study, GCPs were used on each plot to register and
orient SfM reconstructions. A basic spatial arrangement of 10
GCPs per plot was sought: four evenly distributed along each
long side and one centered at 0.20m from upslope and down-
slope boundaries (Figure 1). Because of the occluding effect of
vegetation (especially that of shrubs), up to 15 GCPs were used
per plot however, to ensure that enough GCPs were common to
both SfM and TLS datasets. Additional GCPs were mainly
placed along the long sides of each plot at positions that ap-
peared to be visible by both technologies. GCPs were 5 cm plas-
tic squares printed with a checkerboard pattern andmounted on
15 cm anchoring pins. A Nikon NPR 352 total station was used
to measure GCP coordinates in reflectorless mode to avoid
physical contact with the soil surface. Average vertical and po-
sitional precisions achieved with the NPR 352 in this study were
respectively 0.4 and 3mm.
A Leica ScanStation 2 was used to provide an independent

source of precise 3D coordinates for the soil surface and vege-
tation in each plot. The ScanStation 2 is controlled by a laptop
computer and collects co-registered color photographs along
with the 3D point cloud. Scans of each plot were conducted
with a 2.0mm spacing at mid-plot. The hemispherical sampling
pattern resulted in finer density at the plot outflow end (approx-
imately 0.5mm) and coarser density at the upslope end
(approximately 8mm). The standard deviation of sampling dis-
tances across the entire plot was 1.7mm.
Erosion plot

Soil microtopography data used in this study were collected
during a series of rainfall simulation experiments aiming at
testing a suite of technologies specifically developed for plot
scale erosion studies in rangeland environment. A Walnut
Gulch Rainfall Simulator (WGRS) (Paige et al., 2004) was used
for this study (Figure 2). The WGRS has an effective spray area
of 6.1m × 2m which determined the 6m × 2m size of erosion
plots used in this study.
Erosion plots were selected to test SfM and TLS technologies

on a range of vegetation canopy covers and ground covers.
Tests on bare ground were performed on a 6m × 2m
outdoor-laboratory rainfall simulation plot while vegetated
plots were selected on a reclaimed construction site. Six vege-
tated plots were selected corresponding to ground occlusion
(GO) by live vegetation and litter of 14%, 23%, 53%, 64%
and 77% and identified as GO14, GO23, GO53, GO64 and
GO77, respectively (Figure 3). The bare laboratory erosion plot
is identified here as GO0. Detailed plot cover characteristics
are summarized in Table I.
Data processing and software used

Images used for SfM reconstruction were taken with the camera
either mounted on a pole or handheld. The rainfall simulation
Figure 1. Schematic of the spatial distribution of GCPs (black dots)
sought on each erosion plot.

Copyright © 2015 John Wiley & Sons, Ltd.
experiments in this study were carried out over the course of
three consecutive years. The first two years, image acquisition
for surface reconstruction was initially planned to accommo-
date the traditional photogrammetry software Leica Photogram-
metry Suite (LPS) (Leica Geosystems, 2006). Since LPS was
designed to process near-vertical aerial photography, the cam-
era was mounted the first two years on a pole with a near-nadir
orientation of the imaging plane with respect to the soil surface
(Figure 4a). After successfully experimenting with the SfM tech-
nology, a more oblique image network was adopted the third
year with the camera handheld (Figure 4b). The handheld con-
figuration, allowed a highly oblique and convergent camera
orientation which was expected to improve reconstruction per-
formance (Mikhail et al., 2001; James and Robson, 2014a) and
also reduced soil surface occlusion by vegetation. A summary
of the image acquisition field protocol and resulting SfM pa-
rameters are presented in Table I.

In this study, SfM reconstructions were performed using the
commercial software PhotoScan (Agisoft LLC, 2013). The
following approach was used by PhotoScan to generate 3D
surfaces:

1. Overlapping soil surface images were imported into
PhotoScan.

2. PhotoScan detected salient soil surface features and
matched these features between images. To detect and
describe image features, PhotoScan uses an undisclosed
algorithm similar to SIFT (Lowe, 1999). In our study, the ef-
fective overlap achieved by PhotoScan (number of views in
which scene features were successfully matched) was on
average 4.18, with a high value of 5.66 for the GO23 plot
(Table I). The effective overlap is a function of various fac-
tors including image spatial overlap (actual scene common
to multiple images), performance of image feature descrip-
tor and accuracy of 3D reconstruction.

3. A sparse 3D reconstruction was performed by PhotoScan
using feature points image coordinates as observations
and solving simultaneously for camera exterior orientation
(position and rotation) and intrinsic calibration parameters.
This step along with step (2) are the core of the SfM method-
ology in PhotoScan.

4. The sparse 3D reconstruction was then refined and refer-
enced to a metric coordinate system by providing to
PhotoScan image and ground coordinates of surveyed
GCPs. A non-linear optimization strategy in which both
camera pose and interior orientation parameters were ad-
justed to minimize error at GCP coordinates. The average
root mean square error (RMSE) achieved at this step was
0.0025m for ground coordinates and 0.3 pixels for image
coordinates. The GCP RMSE encompasses both errors in
the GCP survey with the total station and intrinsic precision
of the sparse SfM reconstruction. The precision of SfM at
predicting 3D point position was estimated as the RMSE of
modeled GCP coordinates from the series of reconstruc-
tions obtained before and after rainfall events on each plot.
Since GCPs were non-erodible, variability in the GCP coor-
dinates indicate the level of precision achieved after re-
peated soil surface measurements. The average positional
and vertical precisions achieved in this study were respec-
tively 0.3mm and 0.2mm.

5. Finally, a Multi-view Stereo (MVS) algorithm (also undis-
closed) was implemented by PhotoScan to produce a dense
3D point cloud from the refined intrinsic calibration and
ground-referenced camera exterior orientation.

Table II summarizes quality settings used in PhotoScan for
the sparse and dense 3D reconstructions. For the dense 3D
Earth Surf. Process. Landforms, (2015)



Figure 2. Picture of the rainfall simulation setup showing the terrestrial laser scanner at its scanning station. This figure is available in colour online
at wileyonlinelibrary.com/journal/espl

Figure 3. Synoptic and close-up views of plots GO0, GO14, GO23, GO53, GO64, and GO77. Each close-up view window is approximately
0.6m × 0.6m. This figure is available in colour online at wileyonlinelibrary.com/journal/espl
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reconstruction PhotoScan also provides an ‘Ultra High’ quality
setting in which depth estimation is performed on the original
images but this option resulted in excessively long computation
Copyright © 2015 John Wiley & Sons, Ltd.
time (>24hours) in our study. Also, the more aggressive depth
filtering strategy was preferred because a high degree of 3D
reconstruction noise was anticipated from vegetation.
Earth Surf. Process. Landforms, (2015)



Table I. Summary of plot surface conditions and image capture information

Plot ID % Ground occlusion % Canopy cover % Litter cover Camera support Number of pictures Effective overlapa

GO0 — — — Pole 25 5.39
GO14 14.10 3.60 11.80 Handheld 127 3.50
GO23 23.18 15.90 15.00 Pole 72 5.66
GO53 53.90 23.70 45.21 Handheld 143 3.09
GO64 64.50 10.90 61.36 Handheld 282 3.83
GO77 77.72 27.27 74.09 Pole 145 3.55

aAverage number of pictures in which each scene feature was successfully detected.

Figure 4. Perspective view of three-dimensional reconstructions show-
ing image network for (a) the camera-on-pole and (b) ground-based cam-
era configurations. Red dots mark ground control point locations. This
figure is available in colour online at wileyonlinelibrary.com/journal/espl

SFM AND LIDAR PERFORMANCE ON VEGETATED PLOTS
Since this study was performed in conjunction with the
operation of the WGRS, the TLS scans could only be performed
from a single vantage point because the WGRS was equipped
with wind screens which blocked access to the surveyed plot
from three sides. This single viewpoint potentially resulted in
significant amounts of the soil surface being occluded by
vegetation. Therefore, results represent what was practically
possible and not what might be accomplished in situations
where multiple viewpoints could be acquired.
This study focuses on measurement of the soil surface, so a

Java program was written to remove vegetated points from
the SfM and TLS products. A number of freely available
software for LiDAR analysis were tested, but those programs
were developed for airborne LiDAR and had significant prob-
lems with the irregular sample spacing of the hemispherical
TLS scans and occluded areas. Other examples of efforts to
discriminate ground surfaces in TLS datasets include Brodu
and Lague (2012), Brasington et al. (2012), and Rychkov et al.
(2012). Our program estimated the soil surface using the
following steps:

1. Provide a coarse estimation of soil surface by superimposing
a grid and finding the lowest point within each grid cell.

2. Fit a second-order polynomial trend surface to these local
minima.

3. Difference measurements from trend surface to separate
local height from overall slope elevation.

4. User specifies a maximum height (0.2m) to quickly elimi-
nate a large number of upper vegetation points.
Copyright © 2015 John Wiley & Sons, Ltd.
5. For remaining points, calculate a second-order trend sur-
face within each grid cell and eliminate points that are
greater than a user-specified number of standard deviations
(1.5) above mean of remaining points (slower).

6. For remaining points, calculate the slope to neighbors
within a search radius of one half the grid dimension
(slowest). Find the maximum slope within each of four di-
rectional quadrants. Remove points whose minimum value
of maximum slope across all quadrants is greater than a
user-specified value (20°).

The strategy of using the minimum of maximum slope in
each direction identified protrusions that were not part of the
local trend in surface relief. User-specified values were deter-
mined through testing by two analysts with data from multiple
plots. This method effectively screened vegetation while mini-
mizing the removal of erosional features or protruding cobbles.

Since SfM and TLS point clouds were produced in different
coordinate systems, they were aligned using the freely avail-
able point cloud comparison software CloudCompare V2.5
(General Public Licence, 2014). An initial alignment using a
point-picking method was performed followed by a fine
registration operation based on the Iterative Closest Point
(ICP) method. Registered point clouds were then used for the
SfM–TLS comparisons.
Reconstruction comparisons and spatial statistics
analysis

To measure the effect of GO on reconstruction, the proportion of
spatial gap in each point cloud was estimated by performing
image analysis on nadir views of the original (with vegetation)
surfaces. In addition, overall reconstruction performance was
evaluated by geometrically comparing vegetation-filtered TLS
point clouds to corresponding SfM point clouds. In particular, dif-
ferences between point clouds were performed to check for any
plot scale surface deformation often present in SfM reconstruc-
tions of weak geometric convergence (Rosnell and Honkavaara,
2012; James and Robson, 2014a; Nouwakpo et al., 2014).

Available methods for comparing point clouds include:
difference of digital elevation model (DoD), cloud-to-cloud
closest point distance (C2C), cloud-to-mesh distance (C2M)
and the model-to-model distance approach (M3C2). Lague
et al. (2013) presented a detailed description and comparison
of these techniques which are summarized here. In the DoD
approach, gridded representations of surface elevation are
differenced to quantifymicrotopographic change (e.g. Brasington
and Smart, 2003; Nouwakpo and Huang, 2012b; Schneider
et al., 2013). This method is fast, but can result in detrimental
loss of spatial information on complex surfaces with overhang-
ing structures and is susceptible to uncertainties due to the inter-
polation process from point cloud to gridded data structures.
The C2C method computes for each point of a reference point
Earth Surf. Process. Landforms, (2015)



Table II. Reconstruction quality settings used in PhotoScan

Parameter Value Description

Feature detection,
matching and sparse
scene reconstruction

Accuracy High Preserves the original image resolution, leading
to accurate pose estimation

Key point limit 40000 Maximum number of features to detect per image
Tie point limit 1000 Maximum number of matches to keep per image

Dense point cloud
reconstruction

Quality High Downscales images by a factor of four before
depth estimation

Depth filtering Aggressive Most stringent tolerance for outlier detection
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cloud, the distance to the closest point or to a locally modeled
surface (height function or least square fit of closest neighbors)
in the compared point cloud. The main drawback of this tech-
nique is its sensitivity to surface roughness, the presence of out-
liers and dependence on spatial sampling rate. In the C2M
approach, change is quantified by computing the distance from
every point of the compared surface to a modeled reference sur-
face (often in the form of a 3D mesh) while the more recent
M3C2 technique (Lague et al., 2013) computes cloud-to-cloud
distances along surface normals, thus avoiding the complex
step of mesh or digital elevation model (DEM) creation.
In our study, soil surface features were characterized by

millimeter-scale elevation variations over the meter-scale pla-
nimetric dimensions of the erosion plots and little overhanging
structures and vertical walls (erosional channels were mostly
V-shaped). The DoD approach was therefore suitable and
sufficient for comparing reconstruction of soil surface features
between TLS and SfM. Nevertheless, vegetation occluded
under-canopy soil surface and were filtered out of each point
cloud with the algorithm described earlier before interpolation
into DEMs. Also, because vegetation interfered with soil surface
reconstruction and resulted in GO, patches of soil surface with
continuous coverage in both SfM and TLS data were selected
for detailed reconstruction evaluation. This patch analysis
allowed a more refined ICP registration by limiting potential
registration errors due to occlusions in the plot reconstructions.
In addition to the DoD analyses, agreement between

TLS and SfM reconstructions on each patch was evaluated by
comparing their elevation semivariograms. A semivariogram
characterizes the autocorrelation in a random process (in this
case the soil surface elevation) between sample points as
distance (lag) between these points increases (Cressie and
Wikle, 2011). The shape of a semivariogram is commonly
described using the following parameters: (1) the range is
the distance at which an initially increasing semivariance
levels off, indicating the range of influence of a point, (2) the
value attained at the range is the sill and (3) the nugget is
the semivariance at an infinitesimal small lag between points.
The advantage of using the semivariogram to compare
TLS and SfM reconstructions is that this method allows evalu-
ating the match between surfaces independently of
registration errors. In other words, hypothetically identical
point clouds are expected to show the same elevation
semivariogram regardless of any systematic registration error
that may exist between them. Rough surfaces would lead
to higher semivariances and stronger nugget effects compared
to smooth surfaces. A detailed presentation of spatial statistics
theories and the semivariogram procedure is beyond the
scope of this article and the reader is referred to references
on the topic (e.g. Cressie and Wikle, 2011; Schuenemeyer
and Drew, 2011) for more specific information.
In the field data, two patches of approximately 2m2 were se-

lected from the vegetation-filtered data (Figure 5). One patch
labelled P14 was selected from plot GO14 in a region where
vegetation influence was limited to sparsely distributed grass
Copyright © 2015 John Wiley & Sons, Ltd.
strands or litter debris. The other patch (P23) was extracted
from GO23 in a plot region where two shrubs were present in
addition to grass and litter debris. These patches were selected
close to the TLS viewpoint (downstream end of the plots) where
TLS point density was the highest and vegetation occlusion was
minimal. This choice of patch location allowed a comparison
of SfM to TLS at its full potential and mitigated any comparison
bias that may have been introduced by the single viewpoint
scanning strategy. Due to the large amounts of data contained
in each original point clouds, each patch had to be subsampled
to a maximum of 20 000 points. This subsampling procedure
facilitated the otherwise computer-intensive semivariogram
computation step.

Data from the laboratory simulation plot was ideal to
study intrinsic TLS and SfM performances with no vegetation
influence. A series of rainfall simulation experiments on this
laboratory plot have created a sorting of soil particles and
aggregates in the downslope direction with a pebbly soil
surface in the active erosion zone approximately 2m from
the downslope end of the plot and a smooth (low texture)
deposition region at the downslope end of the plot. Since
SfM relies on accurate matching of salient image features,
surface smoothness is expected to influence reconstruction
quality. The smooth and pebbly vegetation free soil surface
conditions were therefore used to determine the effect of
surface smoothness on SfM reconstruction by comparison to
the TLS system. For this purpose, four patches were selected
on plot GO0. Two of these patches were selected in the
deposition area (P0DL and P0DS) and two patches in the ac-
tive erosion area (P0EL, P0ES). P0DL and P0EL are approxi-
mately 1.5m2 in size and are expected to describe surface
conditions at a scale comparable to that of P14 and P23
and were subsampled to 20 000 points. P0DS and P0ES are
approximately 0.6m2 in size and were left in their original
point density to describe fine-scale soil surface variations.
Results

Overall reconstruction evaluation

Results of the effects of GO on TLS and SfM on soil surface
reconstructions are summarized in Table III. Overall, the single
viewpoint TLS data was several times more susceptible to GO
than SfM. The proportion of missing point gaps was not
directly correlated to percent ground cover data. For example
the moderately vegetated GO23 plot resulted in an apprecia-
bly higher proportion of missing point gaps (30.7%) compared
to the more densely vegetated GO77 plot (23.0%). Patterns
of missing points in the TLS data were instead controlled
by the geometry of shadows projected by plants relative
to the oblique point of view of the TLS (Figure 5). As an exam-
ple, plots with the highest proportion of missing point gaps
(e.g. GO23 and GO64) also contained the highest number
of shrubs (six per plot). This shadowing effect is well known
Earth Surf. Process. Landforms, (2015)



Figure 5. Examples of bare earth surfaces (vegetation filtered out) reconstructed from terrestrial laser scanning (TLS) and Structure-from-Motion (SfM)
for 0%, 14%, 23% and 77% ground occlusion (GO). The white holes indicate regions of missing points or sparse point density. The solid and dashed
yellow polygons show the outlines of the patches used for the detail cloud comparison. Grid spacing = 1mm. This figure is available in colour online
at wileyonlinelibrary.com/journal/espl

Table III. Missing point gap in three-dimensional (3D) point clouds
and elevation differences of TLS–SfM

TLS % SfM % Elevation difference (mm)

GO0 0.70 0 –0.03 ± 5.00
GO14 17.0 0.04 –0.47 ± 4.60
GO23 30.7 0.60 –1.08 ± 13.08
GO53 21.9 0.50 0.01 ± 8.34
GO64 37.8 1.1 –28.3 ± 21.70
GO77 23.0 0 –9.90 ± 21.50

SFM AND LIDAR PERFORMANCE ON VEGETATED PLOTS
in ground based TLS reconstruction and is typically reduced by
scanning the scene of interest from different points of view.
SfM was inherently less susceptible to soil surface occlu-

sion by vegetation because the camera was mobile around
the plot. Missing points in the SfM point clouds were primar-
ily caused by inconsistent image matching of vegetation fea-
tures (Figure 5). In fact, image matching algorithms rely on
uniqueness, salience and visibility of interest points in the
scene. In pixel regions where vegetation was imaged, pixels
Copyright © 2015 John Wiley & Sons, Ltd.
were often very similar, resulting in many mismatches and in-
consistent 3D positions. These inconsistent 3D blunders were
automatically filtered out of the final point cloud by
PhotoScan, resulting in incomplete or absent vegetation
patches. In the TLS data, stems, branches as well as under-
canopy soil surface were reconstructed as long as they were
in the line of sight of the laser. With SfM, under-canopy veg-
etation material and soil surfaces were only reconstructed
when the camera was handheld and the oblique configura-
tion allowed these areas to be visible in overlapping images.
When the camera was mounted on a pole (near-nadir), plant
canopy was reconstructed but was underlain by a gap equiv-
alent to the canopy footprint. This improved soil surface cov-
erage by the converging image configuration explains for
example (Table III) the lower occlusion observed on GO53
(0.5%) compared to GO23 (0.6%).

Reconstructions of the GO0 plot presented the opportunity
to evaluate the performance of both technologies with no inter-
ference from vegetation or larger rock outcroppings. Figure 6
shows the overall comparison between TLS and SfM point
clouds. In Figure 6a, the zero-centered distribution of elevation
Earth Surf. Process. Landforms, (2015)



Figure 6. Comparison between TLS and SfM reconstructions for GO0 showing histogram (a) and map (b) of elevation differences between interpo-
lated DEMs at 1mm grid spacing. This figure is available in colour online at wileyonlinelibrary.com/journal/espl
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differences suggests that both technologies generated very
similar surfaces. Mean and standard deviation of elevation dif-
ference were �3.3 × 10�2mm and 5mm (Table III). The DoD
map in Figure 6b confirms this match between both surfaces,
as areas with more than 10mm difference between TLS and
SfM point clouds mostly occurred in regions that were oc-
cluded from the TLS scan position.
Figure 7 shows the histograms of the DoD TLS–SfM on the

field data when vegetation was filtered out of the point clouds.
The mean and standard deviation of the DoD analyses are
summarized in Table III. These results show that increasing veg-
etation cover tends to decrease agreement between TLS–SfM
point clouds. In addition to inherent sources of error associated
with TLS and SfM systems, potential factors contributing to this
disagreement of TLS–SfM in the field data include: noisy 3D
reconstruction in the SfM data due to vegetation, uncertainty
associated with the vegetation filtering algorithm and wind ac-
tion on vegetation resulting in the inclusion of moving features
in the SfM reconstruction.
In Figures 6b and 7, a pronounced systematic alternating

error pattern (positive–negative–positive or negative–positive–
negative) in the downslope direction can be observed on
the DoD of plots GO0 and GO23. This error pattern is
consistent with projective compensation in image-based re-
construction with low geometric convergence (Mikhail et al.,
2001) whereby small errors in camera position are compen-
sated in the numerical optimization process by adjustment of
3D point coordinates. In SfM reconstructions with weakly
convergent geometry, this phenomenon often results in a
‘doming effect’ (Rosnell and Honkavaara, 2012; James and
Robson, 2014a; Nouwakpo et al., 2014). In our study, plots
GO0, GO23 and GO77 were reconstructed from images
taken from the camera mounted on a pole which resulted
in a weakly convergent image network and broad scale
deformation. On plot GO77, the deformation pattern was
present but appeared dampened by the large magnitude of
SfM–TLS differences introduced by vegetation on this
plot. The ground-based camera (handheld) offered a more
convergent image network for GO14, GO53 and GO64
which controlled the deformation problem in these SfM
reconstructions.
Copyright © 2015 John Wiley & Sons, Ltd.
Spatial statistical analysis

Figures 8 and 9 show the results from the detailed spatial
analysis of field and laboratory soil patches. Overall, the
semivariograms show that both methods capture similar
patterns of spatial variability in surface height, however,
semivariances derived from TLS data were systematically
higher than those from SfM, an indication that the latter tech-
nology produced a smoother surface. The difference maps to
the right of the semivariograms show that the reduced
semivariance is due to the dynamic range of the SfM surface
being suppressed, with peaks and troughs being smoothed
out. Patches P0DL and P0EL were considerably smoother than
P14 and P23 and the Y-axis is an order of magnitude smaller.
This was expected because the laboratory soil surface was
manually prepared by evenly spreading the soil over the plot,
leading to an inherently smoother surface than that observed
in natural field conditions.

Semivariogram parameters calculated for each laboratory
patch (P0) (Table IV) show the presence of a nugget with TLS
but not with SfM. Many authors have reported the absence of
nugget effect in soil surface data when a small grid sample is
used (e.g. Linden and Vandoren, 1986; Helming et al., 1993;
Vermang et al., 2013). While the absence of nugget in the
SfM might appear to be beneficial, it is more likely an indica-
tion that the SfM surface is smoothly interpolated at the finest
scales rather than representing unique height estimates.
For the field patches (P14 and P23), no nugget effect was
present in the TLS data, likely a result of the vegetation
filtering algorithm (Figure 8 and Table IV). The SfM-derived
semivariogram for P14 revealed a nugget effect resulting from
fitting a Gaussian semivariogram model to this data. At very
small lag distances, the Gaussian model overestimated ob-
served variance, leading to an artifactual nugget effect.

The larger nugget effect in the TLS data observed on the
large patches (P0DL and P0EL) compared to the small patches
(P0DS and P0ES) is the result of the downsampling of the large
patches to 20 000 points which did not capture variability at very
small lag distances. The TLS-derived variogram for the full-
resolution smooth surface P0DS in Figure 10a shows the actual
limit of TLS precision, where the nugget variance corresponds
Earth Surf. Process. Landforms, (2015)



Figure 7. Results of the TLS–SfM comparison showing maps of difference of digital elevation model (DoD) at 1mm grid spacing for the field plots
(GO14, GO23, GO53, GO64, GO77) and the corresponding histograms of elevation difference. This figure is available in colour online at
wileyonlinelibrary.com/journal/espl
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to a standard deviation between adjacent points of 1mm, a value
well within the 2mm nominal precision of the Scanstation 2
instrument. This indicates that some of the nugget variance in
Figure 9a was a combined effect of surface variability and the
downsampling. For the pebbly surface in Figure 10b, the higher
nugget variance observed by the TLS system is expected with
the abrupt edges and overhangs of pebbles increasing the stan-
dard deviation between adjacent points to 2.3mm in height.
The decrease in roughness from the active erosion area

(P0ES and P0EL) to the deposition area (P0DS and P0DL), was de-
tected in both TLS and SfM data (Figures 9 and 10) and indicated
by a lower sill of the semivariogram in the deposition area.
Semivariogram ranges (area of influence of a spatial point) were
similar between technologies for the same patches in laboratory
conditions (Table IV). At both sampling densities ranges obtained
for the deposition zone were larger than those obtained for the
Copyright © 2015 John Wiley & Sons, Ltd.
actively eroding area. In the deposition area, these ranges repre-
sent the average period of long wave undulations that often char-
acterize deposition deltas as shallow secondary channels form in
deposited material. This repeating pattern explains the decrease
in semivariance of P0DL beyond for lag distances larger than
the range (Figure 9a). At the dense sampling rate, observed
semivariogram ranges in the active erosion patch (P0ES) can be
related to individual rock sizes (23mm on average).
Discussion

Sources of error

Differences in sources of error and uncertainty propagation
models between TLS and SfM technologies explain disparities
Earth Surf. Process. Landforms, (2015)



Figure 8. Semivariogram of elevation values and map of elevation differences (1mm grid spacing) between SfM and TLS points (ZSfM–ZTLS) for
patches P14 (a) and P23 (b). The difference maps are shaded with TLS-derived microtopography at a vertical exaggeration ratio of two. This figure
is available in colour online at wileyonlinelibrary.com/journal/espl

Figure 9. Semivariogram of elevation values and map of elevation differences (1mm grid spacing) between SfM and TLS points (ZSfM–ZTLS) for
patches P0DL (a) and P0EL (b). The difference maps are shaded with TLS-derived microtopography at a vertical exaggeration ratio of two. This figure
is available in colour online at wileyonlinelibrary.com/journal/espl
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in reconstructed surface smoothness. In SfM, the critical step of
point matching relies on the relative color distribution through-
out each image. Since neighboring points likely lie on similar
regions of the color spectrum, computed 3D point positions
in SfM are inherently influenced by loss of details due to analog
to digital conversion and the RGB (red, green, and blue) value
interpolations that occur at the image sensor level. These pro-
cesses tend to smooth out irregularities from SfM-derived sur-
faces. This smoothing does not occur with the TLS since each
Copyright © 2015 John Wiley & Sons, Ltd.
point is determined from an independent range (distance) and
angle measurement, leading to a surface that preserves fine-
scale details.

Plot scale comparisons between TLS and image-based sys-
tems for 3D soil surface reconstructions have been carried out
by only a few authors (e.g. Heng et al., 2010; Castillo et al.,
2012). These studies including the one presented in this article
assume TLS to be a benchmark technology for evaluation of
image-based technologies. In our study, the standard deviation
Earth Surf. Process. Landforms, (2015)



Table IV. Best fitting parameters of surface patch semivariograms assuming an exponential model

Sill (m2) Nugget (m2) Partial sill (m2) Range (m) Effective range (m)

P0DS TLS 2.32 × 10–6 9.00 × 10–7 1.42 × 10–6 5.80 × 10–2 1.74 × 10–1

SfM 1.13 × 10–6 0 1.13 × 10–6 5.80 × 10–2 1.74 × 10–1

P0ES TLS 1.03 × 10–5 5.22 × 10–6 5.06 × 10–6 2.31 × 10–2 6.94 × 10–2

SfM 6.56 × 10–6 0 6.56 × 10–6 2.23 × 10–2 6.69 × 10–2

P0DL TLS 1.23 × 10–5 2.43 × 10–6 9.84 × 10–6 1.87 × 10–1 5.62 × 10–1

SfM 8.42 × 10–6 0 8.42 × 10–6 1.80 × 10–1 5.40 × 10–1

P0EL TLS 3.18 × 10–5 6.35 × 10–6 2.54 × 10–5 1.50 × 10–1 4.50 × 10–1

SfM 2.66 × 10–5 0 2.66 × 10–5 1.42 × 10–1 4.27 × 10–1

P14a TLS 1.38 × 10–4 0 1.38 × 10–4 4.40 × 10–1 9.80 × 10–1

SfM 1.07 × 10–4 5.49 × 10–6 1.01 × 10–4 3.60 × 10–1 6.24 × 10–1

P23 TLS 2.81 × 10–5 0 2.81 × 10–5 1.40 × 10–1 4.19 × 10–1

SfM 2.49 × 10–5 0 2.49 × 10–5 2.54 × 10–1 7.61 × 10–1

aGaussian semivariogram model used for best fit.

Figure 10. Semivariogram of elevation values of TLS and SfM points for patches P0DS (a) and P0ES (b).
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of elevation difference between TLS and SfM DEM of 5mm on
the least vegetated plots (GO0 and GO14) was higher but in the
same order of magnitude as that obtained by Heng et al. (2010)
(3.5mm) in similar conditions (bare laboratory plot). Even
when the systematic doming effect was removed from the
GO0 plot error map with a two-dimensional second-order
polynomial (Figure 11), the RMSE of the SfM–TLS differences
was marginally impacted and remained at 5mm. These results
suggest that agreement between surfaces derived from image-
based systems and TLS might be limited by sources of error
inherent to each technology. It is important to note that Heng
et al. (2010) used a traditional photogrammetric approach
Figure 11. Comparison between TLS and SfM reconstructions for
GO0 after removal of systematic ‘doming’ effect with a two-dimensional
polynomial fit. (a) Histogram of the comparison. (b) Map of difference of
digital elevation model (DoD) at 1mm grid spacing. This figure is avail-
able in colour online at wileyonlinelibrary.com/journal/espl

Copyright © 2015 John Wiley & Sons, Ltd.
which typically results in better accuracy than the SfM used
in this article but at the cost of increased complexity.

In the TLS system, the most dominant source of error likely
arises from the range measurement function. A close examina-
tion of the surface reconstructed for the GO0 plot (Figure 12)
showed that when ground features (e.g. broken branch,
wooden stake) create a partial occlusion zone, points located
at the perimeter of the occlusion boundary are poorly
reconstructed, resulting in a trail of erroneous points scattered
across the occlusion envelope. A possible explanation of this
phenomenon is that at these occlusion boundaries, the laser
footprint straddled foreground and background points leading
to multiple laser pulse echoes inaccurately processed by the in-
strument. This type of aberration is likely a major source of
error in TLS-derived field surfaces where occlusion by vegeta-
tion is significant and could be reduced by adopting a multi-
view scanning strategy coupled with an adequate blunder
detection scheme.

In addition to these technology-specific error sources are
point cloud registration errors. This error type is difficult to
rigorously quantify from our data due to the confounding effect
of error sources described earlier. In fact ICP registration errors
expressed as final point-to-point distance RMS were within
the same order of magnitude as the DoD standard deviations
for all plots. Nevertheless one can approximate actual point
cloud registration errors to the 2.5mm RMSE of the GCPs in
the PhotoScan workflow since ground coordinates of these
GCPs were determined with a total station, a non-automated
version of TLS.

SfM-derived surfaces suffered plot scale accuracy problems
expressed as plot-scale warping which can be very serious
depending on the intended use of the reconstruction.
Others (e.g. Fonstad et al., 2013; James and Robson, 2014a;
Nouwakpo et al., 2014) have also reported similar deforma-
tions in SfM-based reconstructions especially when the image
Earth Surf. Process. Landforms, (2015)



Figure 12. Close-up image of decimeter scale ground features reconstructed by SfM (a), TLS (b) and distance map SfM–TLS surface (c). Note trailing
TLS points off sharp edge of the log (center) and stake (far left). This figure is available in colour online at wileyonlinelibrary.com/journal/espl
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network produced near-parallel imaging directions. The prob-
lem of projective compensation leading to these deformations
is typically reduced in traditional photogrammetry with a
judicious selection of GCPs used to constrain the least square
adjustment. This dependence of traditional photogrammetry
on GCPs was alleviated by SfM but at the cost of accuracy.
Nevertheless, to be useful for most applications, SfM-derived
soil surfaces have to be geo-referenced into metric coordinate
systems by means of GCPs. A careful distribution of GCPs
across the soil surface can serve as a quality check of the over-
all accuracy by evaluating spatial trends in GCP residuals. In
addition, by distributing GCPs across a range of elevation one
can better capture the dynamic range of the soil surface
with SfM. Alternatively, James and Robson (2014a) demon-
strated that the inclusion of oblique images in a network of
predominantly near-parallel imaging directions reduced
DEM errors.
Application considerations

In this study, point clouds containing variable levels of vegeta-
tion were obtained using SfM and TLS. An increase in shrub
cover resulted in significant GO in the TLS data but the 3D
distribution of shrubs was captured. In the SfM data, shrubs
were only reconstructed when image texture in shrub regions
allowed successful feature matching. The effect of shrub on
soil surface reconstruction seems therefore to be limited to oc-
clusion. Spatial coverage of TLS data is controlled by obstruc-
tions relative to the TLS view point and will therefore depend
on canopy height, diameter and spatial distribution. In the
SfM data, the main shrub characteristic controlling spatial cov-
erage of soil surface is canopy diameter and spatial distribution.
One can imagine, nevertheless, the existence of a maximum
shrub height beyond which plot scale SfM becomes impractical
and requires more complex camera support systems such as
unmanned aerial vehicles. From field experience, we estimate
this maximum shrub height to be around 1m.
In contrast to shrubs, grasses and isolated litter debris can

generate noise in the soil surface data. In the TLS data, individ-
ual grass strands and litter debris were often reconstructed in
areas where they were absent in the SfM data due to the sensor
level attenuation occurring in digital cameras. This high fre-
quency noise can be easily removed from TLS data using low
pass filters. As grass cover increases, soil surface signal-to-noise
ratio significantly decreases in both TLS and SfM. A similar
increase in the noise of photogrammetric surface elevation
models was reported by Rossi and Ares (2012a). At high grass
Copyright © 2015 John Wiley & Sons, Ltd.
cover, the soil surface is completely invisible and SfM or TLS
reconstructions were of little value for soil erosion application.
For example, in our study, the GO77 plot was reconstructed as
a dense point cloud of grass pixels with no clearly defined soil
surface feature. Nevertheless, since grass cover increase is in-
versely related to soil erosion processes, soil microtopography
information on high grass cover plots is of limited interest for
understanding sediment transport processes.

With an average camera – ground distance of 2.34m, the
0.24mm vertical precision achieved in this study is equivalent
to a 1:11 700 relative precision ratio, better than the 1:6400
scale precision ratio obtained by James and Robson (2012)
on a centimeter scale geologic rock sample. The better relative
precision ratio obtained in our study is the result of two possible
factors. First, the more complete distortion model used
in PhotoScan compared to the single radial distortion parame-
ter implemented in the freely available SfM software used in
James and Robson (2012) may have performed better at
reconstructing scene geometry. A second factor explaining
our improved relative precision ratio compared to that of
James and Robson (2012) is the use in our study of repeat
estimates of GCPs to calculate precision thereby reducing
potential errors introduced by the independent total station
measurements. In James and Robson (2012), precision
estimates may have been confounded by other factors such
as precision of the independent laser scanner measurement
used as benchmark and potential errors in the ICP method
used to register their SfM reconstruction with laser scanner
outputs.

Elevation change precisions are important for adequate inter-
pretation of detected geomorphic changes. For sediment
budget estimation, they can be used to define simple threshold
values for erosion – deposition measurement assuming a
spatially uniform error distribution (e.g. Nouwakpo and Huang,
2012b) or used in more complex error propagation schemes
such as the fuzzy interference system proposed by Wheaton
et al. (2010). Assuming a simple error propagation rule
(i.e. no interaction between error sources), the 0.2mm vertical
precision of the SfM data estimated from the repeat reconstruc-
tions would result in a 0.28mm precision for change detection.
For the TLS data however, vertical measurement precision is
not directly available from the instrument output. In theory, it
is possible to determine achieved precision in the TLS point
cloud by applying error propagation functions to distances
and angles measured by the instrument for each individual
point but angle measurements were not included in the TLS
output. In addition, the 1mm average point spacing adopted
was insufficient to allow precise identification of stable points
Earth Surf. Process. Landforms, (2015)
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from the repeat TLS measures which would have been to
estimate precision. Nevertheless, a nominal surface model
precision of 2mm was provided by the manufacturer for the
TLS instrument. A 2mm measurement precision suggests a
change detection threshold of 2.8mm for the TLS data. This
value is one order of magnitude larger than that achieved with
the SfM method and would limit the usefulness of TLS in track-
ing millimeter-scale changes to soil microtopography that
occur during erosive events.
Practical considerations

During our field tests, each TLS scan took approximately 15mi-
nutes for the 6m × 2m plot. To reduce the effect of occlusion
on final reconstruction, it was estimated that each plot would
have required a minimum of four scan positions given the type
and density of vegetative cover. Assuming that this four-corner
scanning scheme was feasible, a minimum of one hour of scan
time would have been required per plot. In addition to this scan
time, is the time needed to move and setup the instrument at
each scan position. A rough estimate of the total time required
to acquire one plot reconstruction using the four-corner scan-
ning scheme is two hours. In contrast, taking pictures for the
SfM reconstruction only took 15minutes per plot. This lower
data acquisition time is a crucial advantage of SfM for experi-
mental field research.
While the TLS output was a point cloud that is immediately

available for analysis, the SfM data is simply a series of overlap-
ping pictures that needed to be processed into a 3D point
cloud. This processing step required on average four hours of
computing time to generate a dense point cloud. In addition
to this, GCP image coordinates had to be measured in the
images to produce a reliable transformation into metric coordi-
nate. Automating the GCP detection process in the images
proved challenging due to the highly textured soil surface
(many rock fragments and vegetation) dominating image fea-
ture. A minimum of two hours of operator time was required
for a manual detection and labelling of these image GCPs per
plot. Assuming a low monetary cost of computation time, the
1.75 hours saved in the field per plot was regained as time
needed for the manual GCP detection. However considering
that the cost of time spent in the field is often several orders
of magnitude larger than that spent in the laboratory, SfM is
likely still cost-competitive for field research compared
to TLS. It is important to note that a four-corner TLS scanning
scheme would require some post processing and quality
check measures to merge all partial point clouds into one com-
plete cloud. Furthermore, soil microtopography changes are
assessed at the millimeter-scale and are extremely sensitive to
systematic errors which may be introduced during the TLS
instrument’s travel through survey positions.
In this study, we found that SfM reconstructions are suscepti-

ble to plot scale deformations that could severely undermine
accuracy of measured surface processes. This type of deforma-
tion can be detected and corrected with GCPs independently
measured with high accuracy. Since some of these GCPs need
to be in the interior of the erosion plot, they interfere with
flow paths and sediment transport processes. This drawback
of SfM compared to TLS can be reduced by installing GCPs
away from flow concentration pathways. It may also be
possible to combine the ability of TLS to capture the full
dynamic range of the surface in an unbiased way with the abil-
ity of handheld photography to rapidly cover the plot and
avoid occlusion by plants. A single view of the plot with TLS
or a sparse set of points surveyed with a total station would
likely have enough information to correct the long distance
Copyright © 2015 John Wiley & Sons, Ltd.
deformation of the SfM model seen in Figures 6b and 7. It
may also be possible to very realistically boost the dynamic
range of fine scale features in the SfM surface by histogram
matching to surface heights observed in local neighborhoods
by the TLS. Alternatively, co-kriging could be used to interpo-
late a surface based on the structure of correlation between
co-registered SfM and TLS surfaces. This hybrid approach
might be much more practical than acquiring data from
multiple TLS viewpoints, particularly if there is an experimental
structure like a rainfall simulator in operation that would
block access.
Conclusions

This study evaluated the performance of SfM and TLS at
reconstructing soil surface with a range of ground covers on
naturally vegetated erosion plots. The single viewpoint TLS
strategy adopted was more susceptible to GO than SfM which
inherently offered better spatial coverage because the camera
was mobile around the digitized surface.

Agreement between TLS and SfM surfaces was best on the
bare laboratory surface with an average elevation difference
between the two technologies of 0.03 ± 5mm. Nevertheless,
some along track distortion was observed in the SfM data
which highlights the importance of quality check measures
such as judiciously place GCPs in image based reconstruction
systems. As vegetation cover increased, agreement between
TLS and SfM degraded but was dramatically affected beyond
53% of ground cover.

Detailed semivariogram analysis on meter-square-scale
surface patches showed that TLS and SfM surfaces were very
similar even on highly vegetated surfaces. However, excessive
smoothing of the SfM-derived surfaces resulted in a narrowing
of the dynamic range and loss of fine scale details with this
technology.

Errors in the TLS data were mainly caused by the distance
measurement function of the instrument especially at the
fringe of occlusion regions where laser light intersect fore-
ground and background features simultaneously. From this
study, we found that by combining the practical advantage of
SfM with the inherently high precision of TLS-like technologies
such as total station, one could achieve soil surface reconstruc-
tions of adequate quality for geoscience and ecohydrology
applications.
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