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Concentrated flow erosion processes are distinguished from splash and sheetflow processes in their
enhanced ability to mobilize and transport large amounts of soil, water and dissolved elements. On
rangelands, soil, nutrients and water are scarce and only narrow margins of resource losses are tolerable
before crossing the sustainability threshold. In these ecosystems, concentrated flow processes are per-
ceived as indicators of degradation and often warrant the implementation of mitigation strategies.
Nevertheless, this negative perception of concentrated flow processes may conflict with the need to
improve understanding of the role of these transport vessels in redistributing water, soil and nutrients
along the rangeland hillslope. Vegetation influences the development and erosion of concentrated
flowpaths and has been the primary factor used to control and mitigate erosion on rangelands. At the
ecohydrologic level, vegetation and concentrated flow pathways are engaged in a feedback relationship,
the understanding of which might help improve rangeland management and restoration strategies. In
this paper, we review published literature on experimental and conceptual research pertaining to con-
centrated flow processes on rangelands to: (1) present the fundamental science underpinning con-
centrated flow erosion modeling in these landscapes, (2) discuss the influence of vegetation on these
erosion processes, (3) evaluate the contribution of concentrated flow erosion to overall sediment budget
and (4) identify knowledge gaps.
& 2016 International Research and Training Center on Erosion and Sedimentation and China Water and
Power Press. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Hillslope runoff and soil erosion processes play a vital role in ran-
geland ecosystem sustainability due to their control on resource mo-
bility (Hassan, Scholes, & Ash, 2005) but they also have significant
implications in off-site resource transport. Nichols, Nearing, Polyakov,
and Stone (2013) found for example that hillslope processes contributed
to 85% of sediment delivery from a 43.7 ha semi-arid shrub-dominated
watershed. The influence of vegetation on hillslope runoff and sediment
production forms the basis of current hydrology and erosion modeling
technologies on rangelands (Nearing et al., 2011). Early attempts to
apply empirical soil erosion models derived primarily from cropland
data, such as the Universal Soil Loss Equation – USLE and the Revisited
Universal Soil Loss Equation – RUSLE, on rangelands yielded un-
satisfactory and contested results (Blackburn, 1980; Foster, Simanton,
Renard, Lane & Osborn, 1981; Hart, 1984; Johnson, Savabi & Loomis,
1984; Mitchell & Roundtable, 2010; Spaeth, Pierson, Weltz & Blackburn,
2003; Trieste & Gifford, 1980). Weltz, Kidwell, and Fox (1998) point to
the lumped nature and rigid structure of these empirical models as a
key deficiency when applied to rangelands where biotic and abiotic
interactions play a strong control on surficial processes.

The advent of physically-based soil erosion models such as the
Water Erosion Prediction Project model-WEPP (Laflen, Lane, & Foster,
1991) offered the opportunity to develop the scientific framework
necessary to provide insight into the relationship between hydrologic
processes and rangeland condition. These research efforts led to the
Rangeland Hydrology and Erosion Model (RHEM) (Al-Hamdan et al.,
2015; Nearing et al., 2011), developed from experimental data spe-
cifically collected on rangeland sites across the Western U.S. As a
process-based erosion model, RHEM models erosion and hydrology
using the same fundamental principles as WEPP. Runoff generation
and erosion on the hillslope are modeled in response to hydrological
inputs and hydraulic parameters that are adjusted based on soil in-
trinsic properties and land surface conditions.

In both WEPP and RHEM, the hillslope is divided into (1) interrill
areas, where rainsplash detachment and sheetflow transport occur
and (2) concentrated flow areas where flow is deep and fluvial
processes dominate. Accurate partitioning of hillslope erosion into
interrill and concentrated-flow-dominated processes has a sig-
nificant implication on rangeland erosion modeling especially fol-
lowing disturbances. Several studies (e.g, Al-Hamdan, Pierson,
Nearing, and Williams (2012b), Pierson et al. (2013a, 2013b); Wil-
liams, Pierson, & Spaeth, 2016; Williams et al., 2014a, 2016a, 2016b)
have demonstrated a significant increase in concentrated flow
erosion when shrub-dominated rangeland are disturbed by fire or
woody species encroachment compared to undisturbed conditions.

Concentrated flow erosion is a complex process because flow
networks have a dual function of sediment and runoff production
and storage as well as that of transport of these resources off-site.
These intricately coupled functions are traditionally assumed to be
controlled by rill flow hydraulics (Govers, Giménez, & Van Oost,
2007). In fact the presence of rills and gullies and the abundance
thereof are key indicators of rangeland health (Pellant, Shaver,
Pyke, & Herrick, 2005). As a surface process, concentrated flow
erosion is directly influenced by biotic factors such as vegetation,
forming feedback mechanisms that are seldom explored.

The aim of this paper is to review published experimental and
conceptual research dealing with concentrated flow erosion processes
on rangelands. In this paper, the term interrill erosion is used
interchangeably with sheet and splash erosion to refer to the process
of raindrop splash detachment and subsequent transport in sheet-
flow. Likewise, the term concentrated flow erosion encompasses a
range of processes leading to the formation and erosion of rills and
gullies, therefore these two terms were used to refer to specific forms
of concentrated flow erosion. In this review we present (1) under-
standing of the fundamental science underpinning concentrated flow
erosion modeling on rangeland with an emphasis on WEPP and ad-
vancements of the RHEM model, (2) the influence of vegetation on
concentrated flow erosion, (3) the contribution of concentrated flow
erosion to sediment budget and (4) knowledge gaps.
2. Physically-based modeling of concentrated flow erosion on
rangeland

In physically based erosion models, overland flow in upland
areas is a combination of concentrated flow (rill and gullies) and
rainsplash sheetflow (interrill) (e.g., Laflen et al. (1991) and Near-
ing et al. (2011)). Concentrated flow is deeper and faster than
overland sheetflow (Julien and Simons, 1985). In most cases the
dominant form of overland flow on rangeland with adequate ve-
getation cover is sheetflow (e.g., Moffet, Pierson, Robichaud,
Spaeth, and Hardegree (2007), Pierson et al. (2011, 2013a, 2008b),
Pierson, Moffet, Williams, Hardegree, and Clark (2009), Williams
et al. (2014, 2014b, 2016a)). However, continuous concentrated
flowpaths play a significant role in amplifying soil erosion when
they exist, especially on steep slopes or where ground cover is
sparse. Therefore, predicting concentrated flow erosion on range-
land is paramount for physically based erosion modeling.

Concentrated flow plays two interactive functions in generating
soil erosion. First, it can act as a transport agent for sediments de-
tached by rainsplash and sheetflow. Second, it can act as a soil de-
tachment agent and becomes a sediment source. Hydraulics of con-
centrated flow plays a key factor in both functions. For instance, flow
velocity and rill width are required components to predict sediment
detachment, entrainment, and transport (Line, & Meyer, 1988; Near-
ing, Foster, Lane, & Finkner, 1989). Therefore, modeling concentrated
flow erosion requires accurate predictions of the hydraulic parameters.
Here we present a description of approaches that have been used for
modeling the physics of concentrated flow erosion on rangeland.

2.1. Concentrated flow hydraulics

Many of the physically based erosion models use open channel
flow hydraulics concepts such as Manning’s equation to model hy-
draulics in concentrated flow (e.g., De Roo et al. (1994), Foster (1982b),
Hairsine & Rose (1992) and Morgan et al. (1998)). In such concepts
velocity V (ms�1) of concentrated flow is related to the geometry of
the flow channel and the hydraulic roughness of the channel surface:

= ( )V
R S

n 1
h
2/3 1/2

where Rh is the hydraulic radius (m) which equals the area divided by
the wetted perimeter, S is slope gradient, n is Manning's number
which represents the channel surface hydraulic roughness.

Other physically based erosion models use the Darcy–Weisbach
roughness coefficient (f) to relate flow rate to flow geometry (i.e.,
Laflen et al. (1991)):
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where g is gravitational acceleration.
The Darcy-Weisbach approach requires quantification of flow-

path geometry such as the flowpath width. Flow width is usually
predicted using empirical equations that relate flow geometry to
flow rate. For example, the WEPP model (Flanagan, & Nearing,
1995; Laflen et al., 1991) predicts rill flowpath width using the
following equation from Gilley, Kottwitz, and Simanton (1990):

= ( )w Q1. 13 30.303

where w is flow width (m) and Q (m3 s�1) is flow discharge.
Historically, rangeland model parameterization of concentrated

flow processes was based on the extensive studies conducted to de-
scribe rill or concentrated flow hydraulics on croplands (e.g. Foster,
Huggins and Meyer (1984a), Foster, Huggins and Meyer (1984b), Gilley
et al. (1990), Giménez and Govers (2001), Gimenez, Planchon, Silvera
and Govers (2004), Govers (1992), Hessel, Jetten and Guanghui (2003),
Lane and Foster (1980), Line and Meyer (1988), Nearing et al. (1997),
Takken, Govers, Ciesiolka, Silburn and Loch (1998) and Weisheng and
Tingwu (2002)). Such approaches can result in poor predictions as
rangeland and croplands have different soil and vegetation cover
characteristics (Moffet et al., 2007). In the past few years, efforts have
been increased to develop physically-based overland flow erosion
models, such as RHEM, specifically parameterized for rangeland pro-
cesses (Nearing et al., 2011; Al-Hamdan et al., 2015; Williams, Pierson,
Robichaud et al., 2016a). Although RHEM models hydrology and ero-
sion using the same fundamental concepts as WEPP, RHEM applies
different hydrologic and erosion parameterizations and uses different
hydraulics predictions that were developed specifically for rangelands
(Al-Hamdan et al., 2015). The current version of RHEM uses the fol-
lowing equation developed by Al-Hamdan et al. (2012a) to predict the
concentrated flow width (w):

=
( )

w
Q

S

2. 46
4

0.39

0.4

This equation is an advancement over Eq. (3) in that it captures
the effect of slope as well as discharge on concentrated flowpath
width for rangelands.

2.2. Soil detachment rate

In most physically-based models soil detachment rate for
concentrated flow is predicted using hydraulic parameters such as
shear stress and stream power. In such approaches, concentrated
flow erosion is often considered to be a threshold phenomenon
where the soil detachment rate can be related to the exceedance of
a hydraulic parameter value with respect to its critical value. The
general formula for these models is:

( )= − ( )D K HP HP 5c HP c
a

where Dc is concentrated flow detachment rate capacity
(kg s�1 m�2), KHP is the soil erodibility factor based on the hy-
draulic parameter HP, HPc is the threshold value where Dcf is in-
significant before HP exceeds it, and a is the power exponent.
Several forms of Eq. (5) have been developed, using different hy-
draulic parameters such as: flow shear stress (τs) (kg s�2 m�1)
(e.g., Flanagan and Nearing (1995) and Nearing et al. (1989)),
stream power (ω) (kg s�3) (e.g., Elliot and Laflen (1993), Hairsine
and Rose (1992) and Nearing et al. (1997)), unit stream power (Ω)
(m s�1) (e.g., Moore and Burch (1986) and Morgan et al. (1998)),
unit length shear force (Γ) (kg s�2) (e.g., Giménez and Govers
(2002)), and unit discharge (q) (m2 s�1) (e.g., Line and Meyer
(1989)). Most of these equations were obtained from research
conducted on cropland soils in field and/or laboratory studies
using flumes.

Evaluation of performance for these hydraulic parameters to
predict concentrated flow detachment rate in various experimental
conditions (Al-Hamdan et al., 2012b; Wirtz et al., 2013) resulted in
no single parameter consistently best-fitting observed detachment
rates. However, Al-Hamdan et al. (2012b) showed that stream
power provides the best relationship among these five hydraulic
parameters to describe concentrated flow detachment rate for dis-
turbed rangeland. Al-Hamdan et al. (2012b) also found that when
concentrated flow occurs that the threshold value (HPc) can be ig-
nored and the exponent of relationship (a) is not significantly dif-
ferent than 1, reducing the equation when using stream power to:

ω= ( ) ( )ωD K 6c

The current version of RHEM uses this equation to calculate
detachment capacity. Al-Hamdan et al. (2012) provided para-
metrization equations for estimating erodibility factor (Kω) based
on site vegetation cover condition and soil texture ((Eqs. (7) and 8)).

( ) = − − ⋅ − ⋅ + ⋅ ( )ωK cover clay siltlog 4.05 0.81 11.87 5.19 7

( ) = − − ⋅ − ⋅ + ⋅ ( )ωK cover rock siltlog 3.29 2.25 1.82 3.95 8

where cover is the fraction of the soil surface covered by plant stems
and residues, rock is the fraction of soil surface covered with rocks,
clay and silt are respectively the clay and silt contents of the soil. Eq.
(7) is used on undisturbed rangelands while Eq. (8) is used on
burned rangelands. One can note the negative coefficients of cover
in both equations, indicative of the beneficial effect of vegetation in
reducing concentrated flow erodibility.

Al-Hamdan et al. (2012b) introduced a dynamic computational
structure in RHEM for concentrated flow erosion modeling on freshly
burned rangelands that start with an initially high KωMax to which an
exponential decay function is applied to reduce Kω with cumulative
runoff. This dynamic erodibility concept addresses the observation
that soil erodibility and sediment availability are greatly increased
immediately after a freshly disturbed site (Al-Hamdan et al., 2012b).
Observed interrill and concentrated flow soil erosion observed im-
mediately following such disturbances were consequently high but
decline rapidly over the course of the first few rainfall events due to
various factors including decrease in sediment availability. The fol-
lowing equation was proposed to estimate Kω and KωMax:

( ) ( )

=

= − − ⋅ − ⋅ − ⋅ + ⋅
ω ω

β

ω 9

K K e

K cover rock clay silt

and

log 3.64 1.97 1.85 4.99 6.06
Max

q

Max

c

where ß is a constant and qc is cumulative runoff.
The detachment capacity is used to calculate the detachment

rate (Dr) (kg s�1 m�2) in RHEM by (Foster, 1982a):

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦

⎥
⎥
⎥
⎥
⎥( )

=
− ≤

− ≥
( )

D

D
CQ
T

CQ T

V

Q
T CQ CQ T

1 ,

0. 5
,

10

r

c
c

C

f
c C

where C is the sediment concentration (kg m�3), Q is the flow
discharge (m3 s�1), Tc is the sediment transport capacity (kg s�1),
and Vf is the soil particle fall velocity (m s�1) that is calculated as a
function of particle density and size (Fair, Geyer, & Okun, 1971).
Soil particle fall velocity is calculated using the mean particle size
(D50) of the soil texture. In this equation concentrated flow de-
tachment rate (Dr) is calculated as the net detachment and de-
position rate.

To calculate the transport capacity (Tc) in RHEM, the empirical
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equation developed by Nearing et al. (1997) is used:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎞
⎠
⎟⎟

( )
( ) ( )

= − +
+ ω

+ + ω 11

T
w

log
10

34.47 38. 61
exp 0. 845 0. 412log 1000

1 exp 0. 845 0. 412log 1000
C

10

Methods of estimating concentrated flow erosion in RHEM
have evolved over the last several years. The earliest version of
RHEM used a shear stress approach and provided satisfactory es-
timates of total soil erosion (Belnap, Wilcox, Van Scoyoc, & Phillips,
2013; Hernandez et al., 2013, Felegari, Talebi, Dastorani & Ranga-
var, 2014; Weltz et al., 2014). The most recent version of RHEM
include the dynamic erodibility concept described above and is
based on the stream power to estimate concentrated flow erosion.
The new approach has improved erosion estimates for con-
centrated flow erosion with a satisfactory range of error (Al-
Hamdan et al., 2015).
3. Effect of vegetation on rangeland hydrology and erosion
processes

Vegetation affects rangeland concentrated flow processes
through its influence on water availability for runoff and sediment
transport, regulation of sediment availability, routing of overland
flow, and control of overland flow velocity and erosive energy (Al-
Hamdan et al., 2012a, 2012b, 2013; Emmett, 1970; Pierson et al.,
2009; Wainwright, Parsons & Abrahams, 2000; Williams et al.,
2014a). Here, we provide an overview of these ecohydrologic re-
lationships. We focus on the effects of vegetation in controlling not
only runoff generation and erosion processes, but also its influence
on infiltration and sediment deposition. Formation of con-
centrated flow is strongly dependent on the spatial connectivity of
runoff and sediment sources across point (o1 m2) to patch scales
(10 s square meters) (Pierson et al., 2010, 2013a; Williams et al.,
2014a, 2016a). We therefore initiate our discussion at the point
scale and progress with discussion of point scale contributions to
concentrated flow processes at the patch to hillslope scales.

3.1. Vegetation effects on water input and runoff generation

Vegetation and associated ground cover strongly regulate con-
centrated flow formation by limiting water available for runoff and
sediment transport. Sediment delivery from rangelands is governed
by the connectivity of runoff and erosion processes and the avail-
ability of erodible soil (Al-Hamdan et al., 2015, 2012;b Williams
et al., 2016a). Vegetation disrupts connectivity of runoff through
interception and storage of water input. The percentage of event
rainfall captured by vegetation and associated ground cover gen-
erally decreases as rainfall intensity increases (Carlyle-Moses, 2004;
Owens, Lyons, & Alejandro, 2006). For low-intensity, short-duration
rainfall events, most of the precipitation is captured by plant ca-
nopies, litter, and other ground cover and is lost to evaporation
(Dunkerley, 2008; Owens et al., 2006). Water input during high-
intensity or prolonged rainfall events usually exceeds interception
storage capacity, resulting in delivery of water to the ground surface
via throughflow and stemflow (Carlyle-Moses, 2004; D. Dunkerley,
2000; D.L. Dunkerley, 2008; Wainwright, Parsons, & Abrahams,
1999; Whitford, Anderson, & Rice, 1997; Martinez-Meza and
Whitford, 1996). Interception by individual shrubs and conifers
commonly averages 50–60% of water input for low-intensity rainfall
events and 5–35% for high intensity or pro-longed rainfall events
(Hamilton & Rowe, 1949; Owens et al., 2006; Rowe, 1948; Skau,
1964; Taucer, Munster, Wilcox, Owens & Mohanty, 2008; Tromble,
1983). Water arriving at the ground surface during an event either
ponds at the soil surface, is stored in the litter layer, infiltrates into
the soil, or is transferred downslope as runoff. Organic matter
contributions and soil fauna activity are typically greater in vege-
tated and litter covered areas relative to bare areas and facilitate
macropore development and soil properties associated with en-
hanced infiltration (Blackburn, 1975; Cammeraat & Imeson, 1998;
Imeson, Lavee, Calvo, & Cerdà, 1998; Puigdefabregas et al., 1999;
Belnap, Welter, Grimm, Barger, & Ludwig, 2005; Dunkerley, 2002;
Ludwig, Wilcox, Breshears, Tongway, & Imeson, 2005). Litter layers
underneath vegetation also trap water input and thereby delay
runoff generation. Prolonged storage at the ground surface allows
water to slowly infiltrate, even in the presence of water repellent
soils (Leighton-Boyce, Doerr, Shakesby, & Walsh, 2007; Pierson
et al., 2010; Pierson et al., 2013a; Pierson, Robichaud, Moffet,
Spaeth, & Williams, 2008; Pierson, Williams, Kormos, & Al-Hamdan,
2014; Williams et al., 2014). Hydraulic conductivity and infiltration
rates can be as much as 25- to 30-fold lower for water repellent
versus wettable soils (DeBano, 1971; Madsen, Chandler & Belnap,
2008). The litter layer in vegetated areas buffers repellency effects
on infiltration by trapping water input and allowing it to slowly
infiltrate via macropores and breaks in the water repellent layer or
slow wetting of the soil profile (Doerr, Shakesby & Walsh, 2000;
Meeuwig, 1971; Pierson et al., 2008a; Williams et al., 2014a). Col-
lectively, interception and enhanced infiltration in vegetated areas
commonly results in two- to more than 20-fold less event runoff
relative to bare or sparsely vegetated areas across the point to patch
scales (Pierson & Williams, 2016).

3.2. Vegetation effects on sediment availability for concentrated flow
processes

Vegetation regulates sediment availability for concentrated flow
erosion through protection of the soil surface from raindrop impact
and the erosive energy of overland flow. Surface protection and soil
stabilization by cover elements are paramount in minimizing ero-
sion given that raindrop impact is the primary sediment contributor
to shallow overland flow and ultimately a source for concentrated
flow (Kinnell, 2005; Wainwright, Parsons, & Abrahams, 2000;
Williams et al., 2016a). Vegetation and ground cover can reduce
rainfall erosivity by nearly 50% (Wainwright et al., 1999). In addition
to reducing raindrop impact, vegetation and ground cover facilitate
roughness elements that trap and slow runoff and promote sedi-
ment deposition (Al-Hamdan et al., 2013; Emmett, 1970; Parsons,
Abrahams & Wainwright, 1996; Pierson et al., 2007, 2009; Wain-
wright et al., 2000). Plants and associated organic material also
contribute to the soil shear strength by anchoring soils and pro-
moting aggregate stability (Blackburn, 1975; Cammeraat et al., 1998;
Cerdà, 1998; Puigdefabregas et al., 1999; Pierson et al., 2010, 2013a,
2013b; Pierson et al., 2014; Williams, Pierson, Al-Hamdan et al.,
2014). Parsons, Abrahams, and Simanton (1992); Parsons, Abra-
hams, and Wainwright (1994) evaluated the effect of cover ele-
ments on rainsplash erosion during high intensity rainfall simula-
tions. Parsons et al. (1992, 1994) found the rainsplash erosion rate
on arid, well-vegetated grassland was 0.01–0.04 g m�2 min�1 for
73–86 mm h�1 rainfall intensities. The same studies measured
0.34 g m�2 min�1 erosion rate on a degraded arid shrubland for a
simulated event with 145 mm h�1 intensity (see Wainwright et al.
(2000)). Rainsplash during the shrubland experiments eroded
about 1.6-fold more sediment from areas between plant canopies
than from areas underneath plant canopies (Parsons et al., 1992).
Results from numerous other studies indicate that erosion rates
from rainsplash and sheetflow at the point scale can be two-fold to
more than three orders of magnitude greater for bare areas than
areas underneath vegetation or with litter cover (Pierson & Wil-
liams, 2016). Actual differences vary with cover, soil, rainfall, and
topography characteristics. Erosion from combined rainsplash,
sheetflow, and concentrated flow processes is typically negligible
where ground cover exceeds 50% (Gifford (1985), Pierson et al.



Fig. 1. Vegetation island redirecting concentrated flow around it resulting in de-
position on the downslope side.
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(2009, 2011, 2013a, 2013b), Weltz et al. (1998), Williams, Pierson, &
Robichaud (2014); Fig. 2(A)).

3.3. Effects of vegetation community structure on concentrated flow
processes

In arid and semiarid rangelands, where vegetation is typically
sparse, a synergistic relationship has traditionally been observed
between spatial distribution of vegetation and runoff structuring.
This vegetation driven spatial heterogeneity (VDSH) stems from
differential soil development and evolution processes between areas
under canopies and bare ground (e.g., Bhark and Small (2003),
Caldwell, Young, McDonald, and Zhu (2012), De Ploey (1984), and
Nulsen, Bligh, Baxter, Solin, and Imrie (1986)) resulting in feedback
mechanisms perpetuating or further accentuating the bare ground –

under canopy soil dichotomy (Puigdefabregas et al., 1999). In addi-
tion, observations in semiarid rangelands suggest that deposition
mounds form upstream of plant clumps as a result of energy losses
and changes in transport capacity that accompany overland flow
diversion by plant stems (e.g., Meire, Kondziolka, and Nepf (2014)
and Rominger and Nepf (2011)). The entrapment of nutrients along
with sediments in these mounds creates areas of nutrients con-
centration where plants thrive spatially alternated by bare or poorly
vegetated zones of water and nutrient depletion, forming the pre-
mise of the “resource islands” or “vegetation island” concept (e.g., Li,
Zhao, Zhu, Li, and Wang (2007) and Ridolfi, Laio, and D’Odorico
(2008)).

From a hydraulic standpoint, these “vegetation islands” can fur-
ther exacerbate the concentrated flow process (Fig. 1). Examples of
this negative feedback loop are seen most often in shrub-dominated
landscapes in the United States, which have formed coppice dunes
such as sagebrush (Artemisia spp.), saltbush (Atriplex spp.), creaso-
tebush (Larrea tridentate, DC. Coville), mesquite (Prosopis glandulosa
Torr.), greasewood (Sarcobatus vermiculatus, Hook. Torr.) and in
pinyon (Pinus spp.) and juniper (Juniperus spp.) woodland domi-
nated areas in arid and semi-arid rangelands (Li et al., 2013; Da-
venport, Breshears, Wilcox & Allen, 1998; Eldridge et al., 2004;
Pierson, Van Vactor, Blackburn & Wood, 1994; Schlesinger, Raikes,
Hartley & Cross, 1996; Spaeth, Weltz, Fox & Pierson, 1994).

Experimental research at the Walnut Gulch Experimental Wa-
tershed in southern Arizona revealed that coarsening of the spatial
structure of vegetation in shrublands led to increase in flow con-
centration and erosion rates (Abrahams, Parsons, & Wainwright,
1995; Parsons, Abrahams, & Wainwright, 1996; Wainwright et al.,
2000). VDSH influences not only runoff partitioning into sheet and
concentrated flow processes but also seems to control flow char-
acteristics in hillslope rills and channels. The same landscape with
uniform disturbance may experience significantly more runoff and
soil loss from a similar runoff event due to increased connectivity of
bare soils and formation of well-organized concentrated flowpaths.
These organized flowpaths rapidly accelerate runoff velocity and
the ability of water to erode and transport sediment downslope
(Davenport et al., 1998; Urgeghe, Breshears, Martens & Beeson,
2010; Wilcox, Davenport, Pitlick & Allen, 1996). Tongway, and
Ludwig (1997) found for example that on degraded tussock grass-
lands, overland flow was concentrated in long straight paths be-
tween the grasses. In the good condition grassland overland flow
was tortuous, uniformly distributed, and produced less soil loss.

Plant community physiognomy affects concentrated flow by
controlling the connectivity of runoff and sediment sources and
the energy of overland flow where it does occur (Williams et al.,
2016a, 2014a, 2016b). On well vegetated rangelands, downslope
transmission of runoff and erosion generated by rainsplash and
sheetflow in isolated bare or sparsely vegetated patches is limited
by ground cover or roughness elements that promote infiltration
and deposition (Pierson et al., 1994, 2009; Reid, Wilcox, Breshears
& MacDonald, 1999; Wilcox, Breshears & Allen, 2003). Soil de-
tachment by concentrated flow is well correlated with flow velo-
city (Pierson et al., 2009, 2008b) and discharge (Al-Hamdan,
Pierson, Nearing, & Williams, 2012; Govers et al., 2007; Nearing
et al., 1997; Nearing, Simanton, Norton, Bulygin, & Stone, 1999),
and flow velocity is strongly related to discharge (Al-Hamdan
et al., 2012; Giménez et al., 2001; Govers et al., 2007; Govers, 1992;
M. Nearing et al., 1997; M.A. Nearing et al., 1999). Grass clumps,
plant bases, root mounds, and litter dams create topographic highs
that may concentrate overland flow where runoff occurs, but the
transport and erosive energy of concentrated flow are greatly re-
duced when flow intersects these roughness elements (Abrahams
& Parsons, 1991; Abrahams & Parsons, 1994; Al-Hamdan et al.,
2012b, 2012b, 2013; Bryan, 2000; Emmett, 1970; Nearing et al.,
1997; Parsons et al., 1996; Wainwright et al., 2000). Reduced flow
velocities and energy limit detachment and transport and allow
surface runoff to disperse and sediment to fall out of suspension.
Rangeland studies from the Great Basin Region, USA, have re-
ported two-fold higher concentrated flow velocities for experi-
ments on bare plots (80% bare ground) relative to well-vegetated
plots 20–60% bare ground (Pierson et al., 2009, 2007). In those
studies erosion from concentrated overland flow was four-fold to
eight-fold greater for bare than well-vegetated plots. Sediment
transported by concentrated flow where it does occur on well-
vegetated sites often forms miniature alluvial fans adjacent to
vegetative clumps (Emmett, 1970; Meire et al., 2014; Rominger &
Nepf, 2011; Seyfried, 1991). These features indicate that con-
centrated flow does redistribute surface soil from bare areas to
vegetated zones on hydrologically stable rangelands, but hillslope
soil loss from this process is minor under such conditions (Pierson
et al. (2009, 2007); Fig. 2(b)). Al-Hamdan et al. (2013) infers that
the existence of a channel network is dictated not by hydraulic
stresses exerted by runoff on bare soil but rather by the spatial
distribution and structure of vegetation to which this network is in
equilibrium. Concentrated flow becomes the dominant erosion
mechanism on degraded rangelands where ground cover is sparse



Fig. 2. Sediment per unit of runoff (A) and concentrated flow velocity (B) versus
percent bare ground measured on rainfall simulation plots (32.5 m2, 85 mm h�1

rainfall intensity) and concentrated flow experiments (12 L min�1
flow release) on

unburned and burned shrublands. Data from Pierson et al. (2009).
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(Pierson et al., 2009, 2011, 2013a, 2008; Williams et al., 2014a,
2014b, 2016a).

3.4. Disturbance impacts on concentrated flow processes

Concentrated flowpaths rarely develop on undisturbed range-
lands, but often become the dominant conduit for overland flow
and sediment transport after disturbance (Moffet et al., 2007;
Pierson et al., 2009; Williams et al., 2014b, 2016a). Such rangeland
disturbance includes: animal grazing, fire- and non-fire-induced
vegetation removal, vehicle traffic, etc. Sediment yield from con-
centrated flow processes is several orders of magnitude greater
than that of sheetflow and rainsplash and can account for 50–90% of
total sediment yield on slopes with sparse to no cover (Pierson
et al., 2008b; Thornes, 1980; Wainwright et al., 2000). Following fire
disturbance, reduced vegetation and ground cover interception,
decreased infiltration rate, and amplified runoff facilitate formation
of concentrated flowpaths (Al-Hamdan et al., 2013; Pierson et al.,
2009; Williams et al., 2016a). These relationships are enhanced on
steep slopes and where overland flow is promoted by soil water
repellency (Pierson et al., 2011; Shakesby, & Doerr, 2006; Williams
et al., 2014). Greater raindrop impact and increased sediment
availability after canopy and ground cover removal result in in-
creased soil detachment and transport from combined rainsplash
and sheetflow processes (Pierson et al., 2009, 2013b, 2014;, 2015;
Williams et al., 2016, 2014a, 2016b). Reductions in ground cover
(decreased surface roughness) abate surface retention of runoff,
allowing flow to concentrate and move downslope with greater
velocity, erosive energy, and transport capacity (Al-Hamdan et al.,
2013; Pierson et al., 2009, 2013a, 2008b; Shakesby et al., 2006;
Williams et al., 2014a, 2016a). The potential overall effect is a de-
crease in the time to runoff initiation and an increase in cumulative
runoff and sediment yield over the duration of a storm event.

Cross-scale field experiments on infiltration, runoff, and erosion
provide estimates of disturbance impacts on concentrated flow pro-
cesses (Pierson & Williams, 2016). Pierson et al. (2009) found that
moderate burning of a steeply sloping rangeland in Idaho, USA, in-
creased runoff of simulated rainfall (85 mm h�1) by two-fold on
0.5 m2 shrub plots immediately following burning. The same storm
simulated at the patch scale (32.5 m2) generated nearly seven-fold
more runoff for the immediate post-fire condition. Increased runoff
immediately following burning accumulated in high velocity con-
centrated flowpaths and generated more than 100-fold more sedi-
ment yield than measured for the unburned condition (Fig. 2). Con-
centrated flowpaths were not observed on unburned plots during the
rainfall experiments. Concentrated flow experiments in the same
study generated three-fold more runoff and six-fold more erosion for
the immediately post-fire condition relative to unburned plots.

The dramatic increase in sediment delivery from the patch scale
simulations and concentrated flow experiments were attributed to
increased runoff and sediment availability and formation of high
velocity flowpaths on the burned plots. Erosion rates and con-
centrated flow velocity on burned plots returned to near pre-fire
levels when ground cover approached 60% two growing seasons
after burning (Fig. 2). Pierson et al. (2008b) conducted similar con-
centrated flow experiments on burned and unburned plots within
the first year after a high severity burn on steeply sloping shrublands
in Nevada, USA. That study measured nearly 18,000 g of soil erosion
on burned plots and 10 g of soil erosion on unburned plots. In an-
other study, Williams et al. (2014a) measured a nearly three-fold
increase in point-scale (0.5 m2) runoff of applied rainfall
(102 mm h�1) on burned conifer plots one year post-fire, but burn-
ing had no impact on runoff from degraded shrub and interspace
(areas between shrubs and trees) plots. Burned plots generated
three- to more than 30-fold more erosion than unburned plots. The
highest erosion rates were measured on burned conifer and shrub
plots with ample available sediment. The same rainfall event applied
at the patch scale (13 m2) generated two-fold and more than 20-fold
more erosion on burned shrub-interspace (plots with shrub and in-
terspace coverage) and conifer plots respectively. The fire-induced
increases in patch scale erosion were attributed to cross-scale con-
nectivity of runoff and sediment sources, formation of concentrated
flowpaths (Fig. 3), and an increase in available sediment following
fire-removal of ground cover (Williams et al., 2014a). The experi-
mental results from Pierson et al. (2009, 2008) and Williams et al.
(2014a) illustrate the profound influence that concentrated flow
processes have on erosion in the first few years following dis-
turbances like burning (Fig. 2). The overall impact of disturbance on
event concentrated flow processes depends largely on the rate or
magnitude of water input, surface susceptibility to runoff and sedi-
ment detachment and entrainment, and the amount of sediment
available (Al-Hamdan, 2012b; Williams et al., 2014b, 2016a).

Overall, on undisturbed arid and semiarid rangelands, it is often
assumed that sheetflow and interrill erosion are the dominant
processes while disturbances such as fire allow for increased flow
concentration and severely weakened soil resistance to rill erosion
(Moffet et al., 2007). This understanding of rangeland concentrated
flow erosion processes is currently reflected in hydraulic para-
meterization equations for rill erodibility in RHEM. In fact Al-
Hamdan et al. (2015) proposed a dynamic modeling framework to



Fig. 3. Concentrated flowpaths formed and are activity eroding as result of loss of
protective vegetation and formation of hydrophobic surface soil layer following
wildfire in Central Nevada.
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match observed temporal declines in erosion rate with time fol-
lowing a major disturbance. In Al-Hamdan et al.'s (2015) model, rill
erodibility was initially high immediately after disturbance and
exponentially decayed with cumulative runoff over the course of
rainfall events.
4. Contribution of concentrated flow to total erosion

Erosion processes occur on a continuum of scales from interrill
to rill and gullies and large river systems (Wondzell & King, 2003).
Once sediments are eroded and collected at the drainage (hillslope,
catchment or watershed) outlet, the task of parsing total erosion
into its different components becomes complex. Quantifying the
contribution of concentrated flow erosion to total erosion often
requires the use of techniques that take advantage of the unique
morphology of these erosional features compared to the sur-
rounding areas. Concentrated flowpaths are deep and expose lower
soil layers to the surface compared to surrounding interrill areas.
Environmental radionuclides have been used to estimate the con-
tribution of concentrated flow processes to total erosion (Liu, Yang,
Warrington, Liu, & Tian, 2011; Wilson, Papanicolaou, & Denn, 2012;
Yang, Walling, Tian, & Liu, 2006). Natural and man-made fallout
radionuclides are unevenly distributed within the soil profile so
they can be used as effective sediment tracers. The most commonly
used radionuclides are caesium-137 (Cs-137) and lead-210 (Pb-210),
providing information on sediment redistribution over medium
term timescales (25–100 years) (Walling, 2013). In recent years,
beryllium-7 (Be-7, a radionuclide with half-life of 53.22 days) has
received increased attention for its potential to trace sediments over
timescales relevant to a single event, enabling an event-based
partitioning of erosion into its components. Using a combination of
Be-7 and Cs-137, Yang et al. (2006) found a dominance of interrill
processes at the start of erosion and a gradual importance of con-
centrated flow processes once rills were formed, representing 54.3%
of total soil loss on a cultivated plot and 61.4% on an uncultivated
forest plot. The temporal shift of erosion processes from interrill-
dominated at the start of erosion to channel-dominated in later
stages of the erosive event has also been found by others (e.g., Liu
et al. (2011) and Wilson et al. (2012)). The spatial scales at which
erosion processes have been investigated with radionuclides varied
from plot and hillslope (e.g., Jha, Schkade, and Kirchner (2015), Liu
et al. (2011) and Porto and Walling (2014)) to whole watershed
assessments (e.g., Geeraert et al. (2015), Gourdin et al. (2014) and
Wilson et al. (2014)). Meteorically-delivered radionuclides such as
Be-7 have less often been used in arid and semiarid environments
as a short-term sediment tracer because low and highly variable
precipitation regimes hinder reliable interpretation of radioactivity
measurement (Kaste, Elmore, Vest, & Okin, 2011).

Another commonly used method to quantify the contribution
of concentrated flow processes in total erosion involves the esti-
mation of rill and gully volume (e.g., Govers and Poesen (1988),
Marzolff and Poesen (2009) and Nyssen et al. (2006)). Di Stefano,
Ferro, Pampalone, and Sanzone (2013) conducted a study on a
semiarid site to estimate the contribution of concentrated flow
processes to total erosion during natural rainfall events. From
manual cross-section surveys of rills and gullies with a mechanical
rillmeter and a total station, these authors found that the con-
tribution of concentrated flow processes ranged from 23.5% to
more than 100%. Di Stefano et al. (2013) attributed the contribu-
tion higher than 100% to sediment delivery mechanisms whereby
a portion of the eroded sediment in rills does not reach the hill-
slope outlet. It is important to note that the experimental sites
used in Di Stefano et al. (2013) were maintained under cultivated
fallow and therefore are considered disturbed.
5. Knowledge gaps and conclusions

5.1. Initiation and spatial distribution of concentrated flowpaths

Despite the advancement of modeling concentrated flow ero-
sion on rangeland, as represented in RHEM, future work is still
needed for improving the prediction of erosion processes. While
the model can simulate detachment rate in concentrated flow, it
does not model or predict concentrated flow formation or rill in-
itiation. Even though rill density or spacing between concentrated
flowpaths is currently a parameter in RHEM, the value of this
parameter is usually set as a default value of 1 rill per meter (i.e.
the spacing between concentrated flowpaths is 1 m). This value
was suggested by Gilley et al. (1990) based on cropland experi-
ments. Assuming a uniform distribution of rills or concentrated
flowpaths on cropland might be logical given the uniformity of its
characteristics. Rangeland overland flow processes on the other
hand vary with vegetation, ground surface conditions, and hill-
slope topography (Pierson et al., 2011; Williams et al., 2014b). In
most cases the dominant form of overland flow on rangelands
with adequate vegetation cover is sheetflow. Concentrated flow
emerges on steep slopes or where ground cover is sparse (Al-
Hamdan et al., 2013; Pierson et al., 2009; Williams et al., 2016a).
Using data from experiments conducted on rangeland with a wide
span of characteristics, Al-Hamdan et al. (2013) showed that for-
mation of continuous concentrated flowpaths at the plot scale is
positively correlated with flow discharge per unit width, slope,
and ground cover. Using the same data, the authors developed a
logistic equation to estimate the probability of overland flow to
become concentrated on rangeland:

( )
( )=

− + + +
+ − + + + ( )

P
S bare q

S bare q

exp 6. 397 8. 335 3. 252 3440

1 exp 6. 397 8. 335 3. 252 3440 12

where S is slope (m m�1), bare is fraction of bare soil to total area
(m2 m�2), and q is flow discharge per unit width (m2 s�1).

In order to address the lack of concentrated flow network
modeling for physically based models on rangeland, new ap-
proaches such as Eq. (12) might be needed. Alternatively, others
have used topographic threshold concepts to predict the location
of concentrated flow initiation. These concepts are based on the
work of Vandaele, Poesen, Govers, and Wesemael (1996) who
proposed an inverse power function between slope S and



Fig. 4. Degrade watershed that has been restored using Vallerani plow to interrupt
concentrated flowpaths and reduce offsite runoff and sediment yield.
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contributing area A above channel heads (Eq. (13)).

α= ( )S A 13b

where α and b are constants.
Some authors have used this model to predict rill and gully

location at watershed scales (e.g., Daggupati, Douglas-Mankin, and
Sheshukov (2013), Dewitte, Daoudi, Bosco, and Van Den Eeckhaut
(2015) and Millares, Gulliver, and Polo (2012)). With the advent of
low-cost three-dimensional reconstruction technologies and the
improvement in the degree of autonomy of Unmanned Aerial
Vehicles, one can expect high-resolution topographic data to be
increasingly available to accommodate the topographic threshold-
based modeling approach. Nevertheless, Eq. (13) is static in nature
and there is a need to develop a dynamic model structure that is
suitable for event-based erosion modeling.

5.2. Improved linkage between concentrated flow processes and re-
source redistribution

It is well recognized that an increase in concentrated flow
erosion leads to an increase in total erosion (e.g., Al-Hamdan et al.,
2015; Pierson et al., 2009, 2011, 2013a, 2008; Williams et al.,
2014a, 2014b, 2016a). What is not well understood however is the
role of rill and gully formation in delivery of eroded material from
interrill areas.

On rangelands, especially those in arid and semi-arid land-
scapes, vegetation can be sparse and a high degree of variability is
observed in soil surface and subsurface conditions. In these eco-
systems, the most notable spatial heterogeneity is imposed by
plants. Soil under vegetated patches was shown to exhibit en-
hanced infiltration and greater water storage capacity (Bhark et al.,
2003; Caldwell et al., 2012; De Ploey, 1984; MartinezMeza, &
Whitford, 1996; Nulsen et al., 1986), increased soil organic carbon
and nutrient inputs (Imeson, & Verstraten, 1989; Virginia, & Jarrell,
1983), promoting greater biological activity that further differ-
entiates these areas as resource sinks while the bare interspace act
as source of material and water.

Concentrated flow erosion when it occurs, is often confined
within the interspace and its course dictated by the spatial ar-
rangement of plants. In a sense, there seems to be a functional
specialization of the interspace as flow concentration pathways
where resources (primarily water) are collected and redistributed
along the hillslope. In fact Schlesinger et al. (1990) proposed that
sparse rangeland ecosystems such as shrubland exploit effectively
an unpredictable and episodic source of water and nutrient supply
to ensure higher production than allowable by average annual
inputs. These researchers also noted that shrubs were more pro-
ductive along intermittent streambeds and in local areas of water
accumulation. Resource redistribution across the landscape seems
to be an essential component of ecosystem dynamics in sparsely
vegetated rangelands. Modeling efforts from Buis, and Veldkamp
(2008) demonstrated that redistribution of water and possibly
other resources might be key to long-term sustainability of these
arid and semi-arid ecosystems.

Redistribution of water and sediment has been empirically
understood and applied to mechanical water harvesting practices.
An example is the Vallerani plowing technique used to create
zones of water collection and flow concentration feeding vege-
tated patches (Fig. 4). The Vallerani plow creates a divot and pu-
shes up soil to form a berm (i.e., bund) that traps water from the
uphill slope (Gammon & Oweis, 2011). This mechanized water
harvesting system provides additional water to the shrubs trans-
planted into the depression that is necessary for their survival. In
addition, a ripping blade is part of the system that is pulled
through the soil to improve water storage capacity. While this
technique has proven successful in watershed restoration in Jordan
and other countries in the Middle East and North Africa (Gammon
& Oweis, 2011; Akhtar et al., 2006, 2010), it still relies on empirical
and speculative knowledge on concentrated-flow-driven resource
redistribution along the hillslope. More research is needed to de-
velop a systematic conceptual and modeling framework that
clarifies the role of concentrated flow processes in resource re-
distribution on the hillslope in order to support effective range-
land improvement practices.

Erosion and deposition processes are often scale-dependent.
On rangelands, field observations and rainfall simulation experi-
ments showed strong runoff decay with hillslope length (Berg-
kamp, 1998; Cerda, 1997; Puigdefabregas, Sole, Gutierrez, del
Barrio, & Boer, 1999). The effect of scale on sediment concentration
is not clearly understood as conflicting results have been found.
Decrease in sediment delivery was shown by some (e.g., Sadeghi,
Seghaleh, and Rangavar (2013)) while others found an increase in
sediment delivery with coarsening of the spatial structure (Wil-
liams, Pierson, Robichaud et al., 2016). de Vente, Poesen, Ara-
bkhedri, and Verstraeten (2007) proposed explanations for these
conflicting results at broad watershed scales but concluded that
overall watershed area is a poor predictor of area-specific sedi-
ment yield which is rather controlled by the relative dominance of
specific erosion processes.

The more fundamental problem might be that erosion science
today has provided ample data-based understanding of detach-
ment and transport processes but has rarely specifically targeted
deposition due to lack of simple adequate tools to quantify this
process. In the Di Stefano et al. (2013) study for example, much of
the eroded material in rills may have been deposited within the
field, likely leading to the higher-than-one contribution of rills
measured in this study. Recent work from Nouwakpo, Weltz,
Champa and Fisher (in press) suggests that concentrated flow
contributions estimated with three-dimensional reconstruction on
a semi-arid vegetated hillslope were several orders of magnitude
lower than predicted with RHEM (version 2.2) even though the
experimental data showed a statistically significant association
between channel volumes and sediment concentration. Currently,
hydraulic parameters and soil properties are key factors in gov-
erning the processes of soil deposition along the hillslope. Unlike
concentrated flow detachment, the process of deposition along the



Fig. 5. Release of a dye plume illustrating how runoff is redirect by vegetation
clumps resulting in increased touristy and reduced sediment transport capacity.

Fig. 6. Illustration of the effect of vegetation on soil surface microtopography
showing a synoptic image of a 6 m�2 m erosion plot (a) and a digital elevation
model of the relative elevation in the plot (b).
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hillslope in Eq. (11) is obtained from the WEPP model. This
equation or concept has not been evaluated on rangeland yet.
Perhaps improving understanding of the mechanics of deposition
processes from measurements specifically targeting this surface
process would help develop a more complete prediction tool for
deposition. This experimental work would be useful to evaluate
the validity of current deposition equations or develop other more
appropriate approaches for modeling deposition on rangeland.

It is possible that on undisturbed rangeland hillslopes, the amount
of erosion produced by rill-forming processes might be low but the
presence of a rill network might substantially influence sediment
delivery (Nouwakpo et al., in press). Knowledge on the feedback be-
tween interrill sediment delivery and concentrated flow processes is
needed to improve hydrology and erosion modeling on rangeland. In
many sparsely-vegetated rangelands, vegetation naturally structures
runoff into the interspace between plants (Fig. 5). In these ecosystems,
the soil supporting vegetated patches is often elevated compared to
the surrounding area (Fig. 6) resulting in runoff being forced to flow
between patches. Currently, flow concentration pathways are per-
ceived as resource loss vessels that need to be minimized on both
rangelands and croplands. This negative perception of channel net-
workmight limit a complete understanding of the role played by these
processes on rangelands. A recent research in the Argentinian Dry
Chaco woodlands (Magliano, Breshears, Fernandez, & Jobbagy, 2015)
showed that rainfall intensity controlled runoff/runon redistribution
patterns with sparsely vegetated rangeland patches were more ef-
fective than densely vegetated patches at capturing moisture under
low intensity events while the denser patches performed better under
high intensity events. While this study did not specifically address the
role of concentrated flow erosion in the resource redistribution, it
certainly highlights the sensitivity of rangeland ecosystems to resource
redistribution. More research is needed to further clarify linkages be-
tween concentrated flow processes and resource redistribution me-
chanisms on rangelands.
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