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Abstract

This research used the rangeland hydrology and erosion model (RHEM) to map ero-

sion risks affecting water quality of the Colorado River that originate on the Mancos

Shale formation in Utah, Colorado, New Mexico, and Arizona. The Mancos Shale is a

significant source of salinity to the river, and a portion of that salt load derives from

erosion of rangeland soils. Here we demonstrate that the hillslope-scale RHEM

model can effectively characterize erosion risk across this large, discontinuous region.

Inputs to RHEM included digital elevation data, maps of soil properties, the LAN-

DFIRE vegetation map, Landsat and MODIS satellite imagery, field data from the

Rangeland National Resource Inventory program of the US Natural Resources Con-

servation Service, and rainfall data from Atlas 14 of the U.S. National Atmospheric

and Oceanographic Administration. RHEM predicted sediment yield at a 30-m spatial

resolution for storms with 30- and 60-min durations whose intensities corresponded

to 10- and 25-year return frequencies. Results corresponded reasonably with prior

field experiments that used the Walnut Gulch Rainfall Simulator (WGRS), with a Spe-

arman's rank-order correlation of .76 for cumulative sediment yield after 20 min of

rainfall. Issues of input map accuracy were identified for rainfall intensity and esti-

mates for sodium adsorption ratio (SAR) of soils. Correction of erroneous SAR at

WGRS sites in one location improved rank-order correlation to .93, indicating very

good model performance where map inputs are accurate. The high-resolution map of

erosion risk developed from RHEM can help to prioritize specific areas for more

intensive study and action.
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1 | INTRODUCTION

Nineteen percent of non-federal rangelands in the state of Utah in

the United States are experiencing moderate to extreme departures

from historic reference conditions simultaneously for soil stability,

hydrologic function, and biotic integrity (NRCS, 2018). Some of these

degraded lands are located on saline soils of the Mancos Shale forma-

tion, contributing disproportionate amounts of sediment, salinity, and

selenium to the Colorado River (Spahr et al., 2000; USBOR, 2013).

The Colorado River is a critical resource for the United States and

Mexico, and its water quality is subject to treaty obligations between

the countries. Land management agencies in the United States are

considering mitigation activities to reduce erosion on these saline

rangelands, and an initial question is how to prioritize different loca-

tions for action. Prior work has documented a significant linear rela-

tionship between salinity and sediment in the runoff from
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experimental rainfall simulator plots on the saline Mancos Shale for-

mation (Cadaret, McGwire, Nouwakpo, Weltz, & Saito, 2016; Cadaret,

Nouwakpo, McGwire, Weltz, & Blank, 2016; Nouwakpo, Weltz,

Arslan, Green, & Al-Hamdan, 2018), and that work demonstrates the

potential for using erosion models to predict salinity loads from these

rangelands under varying conditions of soil, topography, vegetation,

and rainfall. The work presented here provides a map of erosion rates

for soils of the Mancos Shale at a 30-m resolution. This map can serve

as part of a prioritization effort to identify specific regions of elevated

erosion risk for possible mitigation activities.

Outcrops of the Mancos Shale extend discontinuously through

Wyoming, Utah, Colorado, New Mexico, and Arizona, with most of

their area draining to the Colorado River. The various units of the

Mancos Shale were laid down during the Mid-Late Cretaceous in

near-shore environments of the Western Interior Seaway. As such,

the bedrock and soils of the Mancos Shale are saline, and sometimes

sodic depending on the depositional environment. Natural sources

have long been recognized as a major source of salinity in the UCRB,

with Iorns, Hembree, and Oakland (1965) attributing 60% to natural

sources and 40% to agriculture. Using the SPARROW model, Kenney,

Gerner, Buto, and Spangler (2009) found a very similar proportion and

quantified the great importance of ‘high-yield’ saline sedimentary

formations from the Mesozoic like the Mancos Shale. There have

been changes in agriculture and land use in the UCRB over time, with

irrigated agriculture on the Mancos Shale likely becoming a dominant

contributor to river salinity (Tuttle, Fahy, Elliott, Grauch, &

Stillings, 2014). Despite this, a contemporaneous study by the

U.S. Bureau of Reclamation (2013) still attributes almost half (47%) of

salinity within the Colorado River to natural sources.

A variety of surface and subsurface processes move salts from

the rangelands of the Mancos Shale to the Colorado River. Prior stud-

ies estimate that as much as 55% of the salinity in the Colorado River

is from groundwater and subsurface reemergence (Kenney

et al., 2009; Shirnian-Orlando & Uchrin, 2000; Warner, Heimes, &

Middelburg, 1985). In addition to groundwater salinity from the geo-

logical substrates, Miller, Buto, Lambert, and Rumsey (2017) revisited

prior work by Kenney et al. (2009) with the SPARROW model and

found salinity from rangelands in the entire UCRB to be on the order

of 30 tons per square mile. It is likely that the saline load is larger for

rangeland soils derived from saline geological parent material com-

pared to other geologic formations in the UCRB. In fact, the outline of

the Mancos Shale is quite visible as the areas of highest rangeland salt

yields in Figure 5 of that report. Using new high-resolution soil

datasets that they developed statistically, Nauman, Ely, Miller, and

Duniway (2019) applied random forest regression to predict salinity

sources in the upper Colorado River basin (UCRB) with a 30-m grid

resolution. One of the most consistent predictors of salinity in that

effort was an index of bare ground, particularly in mountainous ter-

rain. Tillman, Anning, Heilman, Buto, and Miller (2018) assessed the

degree to which different reaches in the UCRB might be candidates

for mitigating salinity by reducing or capturing soil erosion. While no

simple relationship provided a uniform result across the UCRB, many

stream gauge locations that were predicted to be good candidates for

mitigation coincided with drainages where the Mancos Shale is pre-

sent. Since that effort focused on the stream network, hillslope ero-

sion models would be required to identify the best field locations for

actual mitigation activities.

A common approach for estimating erosion has been to use the

universal soil loss equation (USLE; Wischmeier & Smith, 1978), or its

various modifications (MUSLE, RUSLE, RUSLE2) that provide empiri-

cal estimates of long-term erosion rates. However, these empirical

methods have important limitations and do not correctly reflect

hillslope-scale soil erosion process on rangelands (Kinnell, 2005;

Weltz, Kidwell, & Fox, 1998; Spaeth, Pierson, Weltz, & Blackburn,

2003). Furthermore, the soils data required to provide the K-factor or

C-factor in USLE-derived equations are not available for large portions

of the Mancos Shale or UCRB. In contrast, a process-based model

provides a more sound basis for predictions in new environments, as

well as the ability to test multiple scenarios for environmental condi-

tions and management actions. This is because its mechanistic formu-

lation is less tied to the explicit circumstances of a prior empirical

relationship. However, compared to the simple algebraic formulations

of empirical techniques, implementation of a dynamic, process-based

erosion model for the entire Mancos Shale would consume more time

and computational resources. This article presents a method for map-

ping erosion potential across the Mancos Shale at a high spatial resolu-

tion using the rangeland hydrology and erosion model (RHEM; Nearing

et al., 2011). RHEM acts at the hillslope-scale to estimate localized ero-

sion rates, so it requires less effort than models that compute flow and

transport through the larger hydrologic network. This allows easy imple-

mentation across the discontinuous spatial extent of Mancos Shale out-

crops because it does not consider the continuity of mass and energy

balances or boundary conditions beyond the single cells of the grid of

input data values. Here, RHEM is parameterized with existing geospatial

datasets, satellite imagery, and field data from the National Resource

Inventory (NRI) dataset collected by the United States Department of

Agriculture (USDA) National Resources Conservation Service (NRCS).

This approach produces maps of erosion risk that can help land man-

agers to define thresholds of accelerated soil loss, to assess the risk of

crossing such a threshold, and to define hot spots where soil conserva-

tion can be applied to avert land and water degradation.

2 | MATERIALS AND METHODS

The study area was the extent of Mancos Shale outcrops that were

compiled from maps of surface geology for Utah, Colorado, New Mex-

ico, and Arizona (Figure 1). The region under consideration was limited

to areas with low levels of agricultural or urban development and

slopes less than 35%. These constraints reflect practical limitations for

potential mitigation activities; also, the RHEM model is not well vali-

dated for very steep slopes. Data for developed land uses and slope

were taken from the LANDFIRE vegetation map (140EVC attribute

class numbers <100, except 31; USGS, 2017) and the United States

Geological Survey (USGS) 1/3 arc sec National Elevation Database

(USGS, 2002). All map datasets for the study were raster grids that

2 MCGWIRE ET AL.



were projected to UTM Zone 12 with the NAD83 datum at a 30-m

spatial resolution.

For vegetation, RHEM requires estimates of percent cover by

(a) annuals and forbs, (b) bunch grasses, (c) sod grasses, (d) shrubs,

(e) litter (on ground), (f) basal area (rooted plant area), and

(g) biological crusts. Given the arid to semiarid climate of the study

area, sod grasses were not considered. Also, data on the distribution

of biological crusts throughout the region were not available and

F IGURE 1 The Mancos Shale (black) in Utah, Colorado, Arizona, and New Mexico (terrain reference: USGS National Map) [Colour figure can
be viewed at wileyonlinelibrary.com]
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assumed to be zero. This assumption is revisited in Section 4.

Remaining foliar and ground cover values were estimated on a per-

pixel basis using a combination of field transect data from the NRI,

satellite imagery, and the LANDFIRE vegetation map. Maps of per-

cent vegetation cover were created by developing a regression

relationship between available field transect data and collocated

values of the normalized difference vegetation index (NDVI; Rouse,

Haas, Schell, Deering, & Harlan, 1974) from LANDSAT satellites.

That relationship was then applied to Landsat NDVI data (30-m

spatial resolution) for areas that were mapped as Mancos Shale, as

described below.

Plant foliar and ground cover data was obtained from the USDA-

NRCS NRI nonfederal rangeland on-site field study (NRCS, 1997). NRI

data are collected as two 50 m transects, oriented 45� from north

(NE–SW; NW–SE), with point-intercept samples every 0.9 m ( Spaeth,

Pierson, Herrick, Shaver, Pyke, et al., 2003). These crossed transects

are randomly located in ecosystems around the United States.

Hernandez, Nearing, Stone, Pierson, Wei, et al. (2013) found that NRI

data were adequate to run RHEM and to effectively assess the influ-

ence of foliar cover, ground cover, plant life forms, soils, and topogra-

phy on soil erosion rates in desert environments of the southwestern

United States. The NRI data used here were from 134 crossed tran-

sects that were collected from 2004 to 2014 at locations that were

within 1 km of the mapped distribution of the Mancos Shale. Total

vegetation cover was estimated by developing a regression between

total cover at NRI locations and the corresponding median of Landsat

NDVI collected during the growing season (April–September) of that

year (Figure 2a). Pearson's correlation (r) between these two variables

was .834. The analysis compensated for changes in Landsat band-

widths from the earlier Thematic Mapper sensor to the current Oper-

ational Land Imager (OLI) sensor using the method of Huntington

et al. (2016). A Type II regression technique called reduced major axis

(RMA) regression was used, since ordinary least squares regression

would produce a deflated slope estimate due to measurement uncer-

tainty in the independent variable (Curran & Hay, 1986; McGwire,

Friedl, & Estes, 1993). The median of NDVI data derived from

LANDSAT during the 2018 growing season was converted to 30-m

scale estimates of percent cover across the Mancos Shale (Figure 3a)

for RHEM using the regression in Figure 2a.

The proportion of shrub cover for each pixel (Figure 3b) was

taken from the 140EVC attribute in version 1.4 of the LANDFIRE

map which used an algorithm to estimate tree or shrub cover that

was based on the example of Toney, Shaw, and Nelson (2009). Tree

cover classes in the 140EVC attribute were treated as shrubs in the

RHEM model. The shrub and tree cover attributes in LANDFIRE are

reported at 10% intervals, so the midpoint of each interval was used

(e.g., 10–20% = 15%). To test of the accuracy of these cover classes,

combined shrub and tree cover in NRI transects was compared to

the corresponding LANDFIRE pixels. The difference in the overall

average between the two sources was 4.4%, indicating low overall

bias. On average, the midpoint of each LANDFIRE cover class was

0.69 standard normal deviates from the mean of NRI cover values. In

the very rare case that the LANDFIRE shrub/tree cover class

exceeded the LANDSAT regression estimate for total cover, the

regression value was used for total cover and shrub cover since it

was developed specifically from data for the local environs. For esti-

mating proportions of annuals and forbs versus bunch grasses with

NRI data, a simple area-wide mean performed as well as any predic-

tive relationship to satellite data or vegetation type. The mean pro-

portion of the two categories was very similar in the NRI dataset, so

Landsat-estimated cover that was in excess of the LANDFIRE shrub

cover was split evenly between these two classes. The NRI dataset

did demonstrate a useful relationship between litter and total plant

cover (r = .709; Figure 2b), and this was applied using a RMA regres-

sion with the Landsat estimate of plant cover. For basal area, a weak

relationship to total plant cover (r = .13) was all that could be derived

from the NRI dataset (Figure 2c). Attempts using NRI to predict

basal areas based on life form (i.e., shrub, bunch grass, etc.) were no

better than the single relationship in Figure 2c. Estimated values of

foliar and ground cover were truncated if they exceeded the range

of 0–100%.

Slope for the RHEM model (Figure 3c) was taken from the

1/3 arc sec National Elevation Dataset which has spatial resolution of

approximately 10 m. Slope calculations are sensitive to interpolation

F IGURE 2 Regressions for estimating vegetation variables
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artifacts in digital elevation models, often producing stepped changes in

value. In order to minimize this effect, the 10-m data were smoothed

using a 9 × 9 Gaussian low-pass filter (Milledge, Lane, &

Warburton, 2009; Walker & Willgoose, 1999) and then resampled to the

30-m resolution of the other raster datasets prior to calculating slope.

This smoothing would be expected to have a minimal effect on 30-m

slope estimates while ameliorating data artifacts. The RHEM model char-

acterizes slope using sine of the slope angle, which at low slope values is

similar to percent slope. In order to provide information on slope shape

for RHEM, the longitudinal convexity of the smoothed 30-m DEM was

calculated using the topographic modeling function in the ENVI image

processing software package (Version 5.5, Harris Geospatial). Based on

visual interpretation of the slope and elevation datasets, a longitudinal

convexity less than −0.25 was labeled convex, convexity up to 0.25 was

labeled ‘uniform,’ and values beyond 0.25 were concave.

High-resolution SSURGO digital soils data from NRCS is not avail-

able for large portions of the Mancos Shale, and the lower resolution

NRCS STATSGO soil maps are not sufficiently detailed for this scale

of modeling. However, Nauman et al. (2019) used statistical models to

develop uninterrupted estimates of soil parameters for the UCRB at a

30-m grid resolution. Percentages of sand, silt, and clay from Nauman

et al. were converted to the 12 USDA soil texture classes for RHEM

(Figure 3f) using the soiltexture package (Moeys et al., 2018) that is

available for the R statistical software package (R Core Team, 2018).

Maps of statistically estimated rock fragment size, rock cover, and

sodium adsorption ratio (SAR, Figure 3e) also were taken from

Nauman et al. (2019). For RHEM, rock cover was set to 0% if the esti-

mated fragment size was less than 5 mm, and the estimated total rock

cover was applied to the remaining areas (Figure 3d).

The precipitation rates used in this study were taken from the

gridded datasets of Atlas 14 of the United States National Atmo-

spheric and Oceanographic Administration (NOAA). The RHEM model

was run using 30- and 60-min duration storms associated with 10-

and 25-year return intervals (four simulations). The study area

overlapped two different geographic regions of the Atlas 14 product,

Midwest and Southwest, and there were noticeable discrepancies

along the boundaries of these two regions. This issue is considered

later in the interpretation of model outputs.

F IGURE 3 Geospatial variables: (a) plant cover, (b) shrub cover, (c) slope, (d) rock cover, (e) SAR, and (f) soil texture [Colour figure can be
viewed at wileyonlinelibrary.com]
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The rangeland hydrology and erosion model includes a term for

canopy water storage that absorbs an initial quantity of rainfall. An

accurate determination of this value is difficult, since interception and

storage depend on canopy geometry, leaf angle distribution, type of

foliage, and characteristics of precipitation and wind speed

(Dunkerley, 2008; Owens, Lyons, & Alejandro, 2006; Pierson &

Williams, 2016). However, this static storage term is generally small

compared to the totals of larger rainfall events, such as those tested

in this study. The MCD15A3H product that is generated from NASA's

MODIS sensor system on the Terra and Aqua satellites provides an

estimate of leaf area index (LAI) that is based on general vegeta-

tion type and land surface reflectance. This LAI measure is the

ratio of one-sided leaf area to ground area. The LAI product is pro-

duced at a 500-m spatial resolution and was resampled to 30 m

using bilinear interpolation. Based loosely on Breuer, Eckhardt, and

Frede (2003), we assumed that the canopy stored 0.4*LAI mm of

precipitation.

Per-pixel inputs and outputs of the RHEM model were man-

aged using the IDL software package (version 8.7, Harris

Geospatial). This study used version 2.3 of the command line ver-

sion of the RHEM model, with the addition of the SAR parameter

developed in Nouwakpo et al. (2018). The command line version

of RHEM provides more control of model parameters than the

web-based version that is available on the internet. The four

modeled storm events were sampled with a 15 s time step, which

was dynamically altered by RHEM as required for numerical sta-

bility. In order to reduce processing time for the more than 22 mil-

lion Mancos Shale pixels, floating point input parameters were

binned to discrete values, and the results for unique combina-

tions of binned input values were stored for future use instead of

re-running the model. This discretization balanced the expected

sensitivity of model parameters with the relative precision of

input data sources. Slope was binned to percents

(e.g., 0–1% = 0.5%). Total vegetation cover and shrub cover were

binned by 5% intervals, and LAI to 0.25 intervals. Total rainfall

was binned to 2.54 mm (0.1 in.) increments. SAR was binned to

unit intervals (maximum SAR pixel value = 18).

Prior studies have performed rainfall experiments with the Wal-

nut Gulch Rainfall Simulator (WGRS) at sites on the Mancos shale

and nearby saline outcrops (Cadaret, McGwire, et al., 2016; Cadaret,

Nouwakpo, et al., 2016; Nouwakpo et al., 2018), and those data

were used to assess the performance of this regional RHEM model-

ing approach. Specific GPS coordinates for each WGRS plot were

not available, but map polygons indicating the spatial extent of each

field site allowed average GIS parameters to be calculated. The field

site names and their geographic centroids are identified in Table 1.

Multiple WGRS experiments were performed at each of these field

sites, using a range of rainfall intensities from 50.8 to 139.7 mm/hr.

The cumulative sediment yields after 20 min of WGRS rainfall were

averaged for each intensity setting at each site and correlated with

the 20-min GIS-driven RHEM estimate for these locations and

intensities.

3 | RESULTS

The time required to run RHEM for the entire Mancos Shale study

area ranged from 29.4 to 49.4 hr on a PC with a 3.4 GHz I7-4770 pro-

cessor, with the larger range of precipitation values in the 25-year

60-min storm creating the greatest number of unique permutations of

input parameters and time. Sediment yield estimates (t/ha) from the

four storm simulations were highly correlated, so only the result for

the 25-year 60-min simulation is presented in Figure 4. The full output

resolution could not be rendered directly, so the data in that figure

were averaged to a 1 ha resolution. Table 2 lists the mean and maxi-

mum sediment yields associated with each storm simulation. There

was an approximate doubling of mean estimated yields between the

10- and 25-year storms, but more than 15-fold increase from 30- to

60-min storms. This reflects the greater relative effect of canopy

interception and initial infiltration on shorter storms.

TABLE 1 Walnut Gulch rainfall simulator site names, geological formations, and geographic centroids (UTM zone 12, NAD83)

Site name State Formation Easting Northing

Delta Colorado Mancos Shale 758,564 4,298,777

Ferron Utah Mancos Shale 489,389 4,313,805

Ferron2H Utah Mancos Shale 489,441 4,313,888

Ferron2L Utah Mancos Shale 489,641 4,313,859

Ferron2M Utah Mancos Shale 489,740 4,314,389

Farmington New Mexico Nacimiento 774,513 4,051,428

Loma Colorado Mancos Shale 682,411 4,358,501

Moab Utah Mancos Shale 598,146 4,295,795

Moab2 Utah Mancos Shale 595,796 4,295,259

Price Utah Mancos Shale 533,766 4,368,225

Rangely Colorado Mancos Shale 683,914 4,449,664

6 MCGWIRE ET AL.



Figure 5 plots the log of sediment yield versus selected model

inputs for more than 8,000 randomly selected points within the study

area, and it provides the corresponding Spearman's rank-order corre-

lations (ρ). The results show that sediment yield is a complex function

of the input variables, with no single variable explaining the majority

of variance. Differences in rainfall rates across the region have little

predictive value. As expected, yield increases with slope and SAR, but

a relatively large proportion of samples maintain lower yields despite

F IGURE 4 Sediment yield (t/ha) for 25-year, 60-min storm (terrain reference: USGS National Map) [Colour figure can be viewed at
wileyonlinelibrary.com]
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high values in either parameter. Conversely, yield is negatively related

to total vegetation cover, but there are locations that are predicted to

have relatively high yields despite high vegetation cover.

Figure 6 presents the distribution of values for sediment yield and

several input variables for each soil type. The greatest sediment yields

were associated with silt loam soils, which are often prone to erosion

since silt particles do not form aggregates and are easily mobilized

(Wischmeier & Mannering, 1969). Compounding this, the silt loams in

the study area are mapped as occurring in compact areas that happen

to have the highest precipitation and greatest average slope

(Figure 6b,c). These soils are largely responsible for the unexpectedly

high yields in locations with high vegetation cover (Figure 6d) that are

seen in Figure 5c.

Figure 7 compares cumulative sediment yield after 20 min from

the WGRS experiments (Table 1) and the corresponding duration for

these locations using the RHEM model with geospatial inputs.

Figure 7a illustrates that the model greatly under-predicted erosion at

the Ferron locations, and that the distribution of variance was gener-

ally non-normal for both the WGRS experiments and the RHEM pre-

dictions. Given the non-normal distribution, Spearman's rank-order

correlation was used, and the nonparametric correlation between the

model and the rainfall experiments was .760, even when including the

Ferron sites. Figure 7b shows the rank-ordered relationship between

RHEM and WGRS. Figure 7c shows rank-orders for a test where

RHEM used field-measured SAR data from Ferron taken from

Cadaret, Nouwakpo, et al. (2016) instead of the mapped values.

4 | DISCUSSION

Weltz et al. (2014) characterized erosion potential on nonfederal

rangelands across the western United States using field data from NRI

and RHEM. However, using map data from the Protected Areas Data-

base (USGS, 2018) and the US Forest Service, Table 3 indicates that

the majority of the Mancos Shale study area is managed by federal

agencies. Note that areas of high urban or agricultural development or

slopes greater than 35% were removed from the calculations in

Table 3. Based on Weltz et al. (2014), RHEM output for the 25-year,

60-min storm was categorized as low risk (< 2 t/ha), medium risk

(2–4 t/ha) or high risk (>4 t/ha), and the area in each category is pres-

ented in Table 3. The Bureau of Land Management manages the

majority of rangelands on the Mancos Shale, and it also has the

greatest area with erosion rates in excess of 4 t/ha. Private lands

cover 27% of the Mancos Shale study area, but contained

F IGURE 5 Log sediment yield versus
(a) precipitation amount, (b) percent
slope, (c) percent vegetation cover, and
(d) sodium adsorption ratio with
Spearman's rho

TABLE 2 Rangeland hydrology and erosion model sediment
yields (t/ha)

Storm Mean Maximum

10-year 30-min 0.18 24.8

10-year 60-min 3.12 237.6

25-year 30-min 0.36 36.4

25-year 60-min 5.58 366.7

8 MCGWIRE ET AL.



F IGURE 6 Relationship of soil texture to (a) sediment yield, (b) precipitation, (c) percent slope, (d) percent vegetation cover, (e) sodium
adsorption ratio, and (f) percent rock cover

F IGURE 7 Erosion from the rangeland hydrology erosion model versus Walnut Gulch rainfall simulator experiments (a: sediment yield, b: rank
order, c: rank order using field-measured sodium adsorption ratio for Ferron sites).

MCGWIRE ET AL. 9



proportionately less area of high erosion risk, possibly reflecting the

negative economic impacts of salinity and soil erosion on decision

making regarding private land ownership. Given that urbanized and

agricultural areas were removed from this study, the actual area of

private ownership on the entire Mancos Shale is larger than that

reported in Table 3. Also, since irrigated agriculture on the Mancos

Shale is potentially a dominant salinity source (Tuttle et al., 2014),

the actual percentage of private lands at high risk would depend

on the areal proportion of irrigated agriculture. Future efforts

could composite this RHEM product with map-based agricultural

salinity estimates to provide better regional information. Tribal

lands cover only 8% of the total study area, but they generally

have low levels of vegetation cover and the majority of their area

was classified as high risk. Conversely, Forest Service lands tend to

have high vegetation cover, and therefore have a lower percentage

of land at high risk than the other public agencies with large land

holdings.

The RHEM model provides a hillslope-scale estimate of soil ero-

sion risk, so the risk map in Figure 4 does not account for streambank

erosion, gullying, or transport and deposition at a broader scale. How-

ever, it does provide a useful representation of which areas would be

expected to be most in need of soil conservation efforts. Figure 6 indi-

cates that the area of greatest erosion risk is on steeper slopes with

silt loam soils, despite the fact that these sites are generally well vege-

tated. However, these figures do not communicate the great differ-

ence in the spatial extent of different soil textures, and that only

slopes less than 35% were considered. The mapped extent of silty

loam was just 1.7% of the study area, while loam covered 40 times

more area. Thus, while other soils had areas with high values for yield,

precipitation, slope, and cover, their overall statistical distribution

trended lower than the small regions of silt loam in Figure 6.

In assessing the uncertainty of the model outputs, there are

numerous issues of scale when attempting to relate the GIS-driven

RHEM model (900 m2 pixels) to the WGRS experiments (12 m2 plots).

Site selections for the prior WGRS studies were made to target spe-

cific types of slope and vegetation cover, rather than attempting to

provide an unbiased representation of the wider environment. Con-

versely, generalization in the creation of map data means that plot-

level heterogeneity could not be represented in RHEM. Also, each

map input has some level of measurement or attribute error. The

differences between RHEM and WGRS erosion estimates at the

Ferron locations (Figure 7a) are primarily due to a map error. Cadaret,

Nouwakpo, et al. (2016) report an extraordinarily high laboratory-

measured SAR value of 35.2 for the Ferron location, while the statisti-

cally modeled map estimate from Nauman et al. (2019) predicted an

average value of 1.24 for these sites. This is important, since a high

SAR creates very dispersive and erodible soil. Substituting the SAR

value reported by Cadaret, Nouwakpo, et al. (2016) for Ferron loca-

tions, Spearman's rank-order correlation between RHEM and the

WGRS simulations increased to .926 (Figure 7c), indicating a very

strong predictive relationship for mapping relative erosion risk with

RHEM when the GIS inputs are accurate. The relative importance of

the uncertainty in the SAR map may be lower if an area has high

predicted sediment yield despite low SAR inputs, or vice versa. For

example, the area of very high SAR values in Figure 3e (orange, left of

center) has relatively low sediment yield in Figure 4, due primarily to

very low slopes (Figure 3c) and moderate rock cover (Figure 3d). In

that case, we might presume that the uncertainty in those high SAR

values is less an issue than for an area of moderate or steep slopes

where the predicted SAR and yield are both low. Also, one could iden-

tify discrepancies between the RHEM SAR input or predicted yield

versus prior studies of stream chemistry like Tillman et al. (2018).

Since we used datasets from Nauman et al. (2019), that source should

not be considered independent. Beyond the specific case of SAR,

many soil properties across the Mancos Shale are the result of heter-

ogenous, fine-scale deposition processes (Tuttle et al., 2014) that can-

not be mapped with commensurate precision.

Another issue with the accuracy of RHEM inputs was apparent

with discrepancies along the boundary between regional precipita-

tion products from NOAA Atlas 14. Little of this boundary zone

intersected the Mancos Shale, and the output from the RHEM model

does not show a very dramatic visible difference. The average differ-

ence in precipitation across this boundary where the Mancos Shale

was present was about 3 mm for the 25-year 60-min data. The larg-

est local discontinuity is north of Shiprock, New Mexico, but the

effect on predicted yields appeared weak in a visual inspection of

the RHEM output. There is potential for improving a future version

of Atlas 14 by increasing the amount of overlap between regions

during the interpolation, and by deriving interpolation parameters in

a more localized manner. However, in this study the uncertainty in

TABLE 3 Area of the Mancos Shale study area by land management category and erosion risk (low <2 t/ha, medium 2–4 t/ha, high >4 t/ha),
sorted by area at high risk

Management Total (ha) Low risk (ha) Medium risk (ha) High risk (ha) High risk (%)

US Bureau of Land Management 789,463 218,025 196,825 374,613 47.5

Private 471,659 274,991 93,242 103,426 21.9

Tribes 145,886 30,523 26,611 88,752 60.8

US Forest Service 229,009 117,957 47,216 63,836 27.9

State Lands 112,851 39,795 27,343 45,713 40.5

US Bureau of Reclamation 831 229 219 383 46.1

US Fish and Wildlife Service 17 8 7 2 11.8
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the SAR map product was likely much more of an issue than the

precipitation.

While this study did not include biological soil crusts due to the

lack of a known map data source, they are an important component

of most ecosystems in the study area and can have important effects

on soil erosion (Carpenter & Chong, 2010; Belnap, 2006; Gao,

Bowker, Sun, Zhao, & Zhao, 2020). The greatest amount of biocrust at

the WGRS field sites was an average of 53% cover at Delta. Even

though the soil crust parameter was not used in RHEM, data points

associated with the Delta site are not outliers in Figure 7b,c. This is

interesting, given that a RHEM-based analysis by Fick, Belnap, and

Duniway (2020) found that soil crusts were the most effective vari-

able for explaining erosion differences between paired Mancos

Shale watersheds that had different grazing histories. The contra-

sting finding of Fick et al. may be due to the comparable nature of

their paired environments, whereas the wide range of slopes, soil

types, and vegetation cover that is modeled here surpasses the vari-

ability in erosion rates due to crusts. It will be important for decision

makers to acknowledge the possible role of soil crusts when using

this RHEM map to prioritize various sites for study or erosion con-

trol activities.

Rangeland hydrology and erosion model predictions of relatively

high sediment yield on silt loams with high vegetation cover

(Figure 5c) are important for interpreting studies like Nauman

et al. (2019) that limit expected sediment and salinity source areas to

very bare soils. Regardless of what is driving RHEM, many studies

(Pierson et al., 2010, 2013; Roundy et al., 2017; Williams et al., 2014)

document that encroachment of dense pinyon-juniper tree cover in

the arid southwest can lead to greatly increased soil erosion as inter-

vening herbaceous cover is suppressed and concentrated flow paths

in the interspaces come to dominate surface flow.

Background soil color is known to affect satellite-based vegeta-

tion indices in areas with limited vegetation cover (Huete &

Tucker, 1991). Kautz et al. (2019) also used a Landsat vegetation

index to predict foliar cover for the RHEM model, obtaining a very

high R2 of .85 for predicting cover. However, that study was for a sin-

gle, small watershed with fewer confounding effects than the broad

scale of application performed here. Using 134 NRI points spread

across the region, our regression between NDVI and foliar cover had

a good, but lower, R2 of .70. The strong relationship between RHEM

and the WGRS experiments after correcting the known SAR error

(Figure 7c) suggests that LANDSAT-based estimates of vegetation

cover are a useful input for process-based models of soil erosion at

this scale of application, despite the influence of soil color.

An issue not dealt with in this study is temporal variation in land-

scape characteristics. At a fine scale, the seasonal leafing-out of vege-

tation makes foliar cover and canopy storage parameters dependent

on the date of a given storm. This concern is ameliorated to some

degree by the circumstance that the most intense precipitation in the

region is typically associated with late summer monsoonal events

when much of the potential leaf area would have been developed.

However, herbivory could reduce leaf area through a season, coun-

teracting this assumption in our method. Also, making litter cover a

simple function of total vegetation cover does not consider that the

generation and removal of plant litter varies through a season, and it

depends greatly on the types of vegetation and land management.

Also at a seasonal time scale, RHEM only predicts erosion from rainfall

events, so contributions of sediment and salinity associated with

snowmelt are not considered in this analysis. Long-term patterns of

land use and grazing create spatially dependent variability in soil and

vegetation characteristics (Duniway, Geiger, Minnick, Phillips, &

Belnap, 2018) that are not reflected in our map and image inputs.

Plant succession, sporadic wildfires, and dramatic disturbance events

in the region eventually will render the current RHEM inputs obsolete

in some locations.

Despite the many uncertainties in map inputs and the fact that

the WGRS field experiments were not designed for the purpose of

model validation, the high rank-order correlation between RHEM and

WGRS simulations indicates that the RHEM product can provide use-

ful insights for prioritization of locations where rangeland soil erosion

is most likely to affect water quality. Given the nature of errors in var-

ious map inputs, field observations will be important for decision mak-

ing that incorporates this RHEM product.

5 | CONCLUSIONS

This study demonstrated the ability to apply the process-based

RHEM model of soil erosion over a large geographic domain for the

purpose of assessing relative levels of risk to water quality. In partic-

ular, the focus on saline soils of the Mancos Shale and previously

documented correlations between sediment yield and salinity on

these formations can provide insights into sources of salinity to the

Colorado River.

Given the uncertainties of map accuracy and differences of scale

in comparing WGRS simulations to the GIS-driven RHEM model, the

moderately strong Spearman's correlation of .76 between the RHEM

model and independent field studies provides good confidence in

using the results as a starting point for decision making. However, the

example of incorrect specification for SAR at the Ferron sites high-

lights the importance of incorporating other available sources of infor-

mation and expertise.

Because they are based on physical properties of the soil and the

specific growth forms of plant cover, physical models like RHEM are

more defensible than USLE-based empirical methods when exploring

the implications of alternative scenarios for rainfall regimes and changes

in land cover or management. The application of RHEM at a per-pixel

level is shown to provide a useful way to characterize hillslope-scale ero-

sion over a very large region, identifying specific high-risk areas for miti-

gation methods like micro-catchments (Founds, McGwire, Weltz, &

Verburg, 2020), or for localized implementation of more sophisticated,

time-consuming models like WEPP (Flanagan, Ascough, Nearing, &

Laflen, 2001) or KINEROS2 (Smith, Goodrich, & Quinton, 1995) that con-

sider flow routing and deposition across a watershed. The erodible, saline

soils of the Mancos Shale contain areas of high erosion risk across fed-

eral, state, and private lands, and this high-resolution map of predicted
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erosion can help those stakeholders to implement more effective soil

conservation efforts for improving water quality of the Colorado River.

Results for the 60-min, 25-year storm simulation are available as

a GeoTIFF through the USDA National Agricultural Library at https://

doi.org/10.15482/USDA.ADC/1518465.
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